Bull. Korean Math. Soc. 49 (2012), No. 6, pp. 1163-1178
http://dx.doi.org/10.4134/BKMS.2012.49.6.1163

EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS WITH
SPECIAL CONFORMALITIES

DAE Ho JIN

ABSTRACT. In this paper, we study the geometry of Einstein half lightlike
submanifolds M of a semi-Riemannian space form M(c) subject to the
conditions: (a) M is screen conformal, and (b) the coscreen distribution of
M is a conformal Killing one. The main result is a classification theorem
for screen conformal Einstein half lightlike submanifolds of a Lorentzian
space form with a conformal Killing coscreen distribution.

1. Introduction

A submanifold M of a semi-Riemannian manifold (M, g) is called a lightlike
submanifold of M if its radical distribution Rad(TM) = TMNTM* is a vector
subbundle of the tangent bundle T M, of rank r(> 0). A codimension 2 lightlike
submanifold M is called a half lightlike submanifold if rank(Rad(TM)) = 1.
Then there exists two complementary non-degenerate distributions S(T M) and
S(TM*) of Rad(TM) in TM and T M+ respectively, which called the screen
and coscreen distribution on M, such that

(1.1) TM = Rad(TM) ®optn, S(TM), TM* = Rad(TM) Gopip S(TM™),

where the symbol @®,,+;, denotes the orthogonal direct sum. We denote such
a half lightlike submanifold by M = (M,g,S(TM)). Denote by F(M) the
algebra of smooth functions on M and by I'(E) the F(M) module of smooth
sections of any vector bundle E over M. Then there exist a non-null section u
on S(TM+) and a null section £ on Rad(T'M) such that

glu,u)=¢€, g&v)=0,Vuve 1"(TML)7

where € = +1. Consider the orthogonal complementary distribution S(7"M )t
to S(TM) in TM. Certainly ¢ and u belong to I'(S(TM)1). Thus we have

S(TM)*t = S(TM™*) ®open, S(TM*)*,
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where S(TM=)1 is the orthogonal complementary to S(TM=) in S(TM)> .
For any null section & of Rad(TM) on a coordinate neighborhood U C M,
there exists a uniquely defined vector field N € I'(ltr(TM)) [4] satisfying

(1.2) g N)=1, g(N,N) =g(N,X) = g(N,u) =0, VX € I(S(TM)).
We call Itr(TM), N and tr(TM) = S(TM?%) @open ltr(TM) the lightlike

transversal vector bundle, lightlike transversal vector field and transversal vec-
tor bundle of M with respect to S(T'M) respectively. Then the tangent bundle
T M of the ambient manifold M is decomposed as follows:

(1.3) TM =TM @ tr(TM) = {Rad(TM) ® tr(TM)} ©oren S(TM)
= {Rad(TM) & ltr(TM)} Sopen S(TM™L) Soren S(TM).

Example 1. Suppose M is a surface M of R} given by the equations

x3 = /22 — 23, x4=1/1+ 2.
Then we derive TM = Span{¢,U} and TM+ = Span{¢,u}, where

U= 563564(91 + 561564(93 + 5611'3(94,
&= 2101 + 2202 + 1303, u=x101 + 2404.

It follows that Rad(TM) is a distribution on M of rank 1 spanned by £. Hence
M is a half-lightlike submanifold of R} such that S(TM) = Span{U} and
S(TM~t) = Span{u}. Then the lightlike transversal bundle ltr(TM) and the
transversal bundle ¢r(T'M) with respect to the screen distribution S(TM) are
given by ltr(TM) = Span{N} and tr(TM) = Span{N,u}, where

N = 72#%%(56181 - 1'282 - 1'3(93).

The classification of Einstein hypersurfaces M in Euclidean spaces R**!
was first studied by Fialkow [7] and Thomas [14] in the middle of 1930’s. It
was proved that if M is a connected Einstein hypersurface (n > 3) such that
Ric = g for some constant «y, then v is non-negative. Moreover,

(1) if v > 0, then M is contained in an n-sphere and

(2) if v =0, then M is locally isometric to R".

The objective of this paper is the study of half lightlike version of above clas-
sical results. For this reason, we consider only screen conformal half lightlike
submanifolds with a conformal Killing coscreen distribution. In Section 2, we
investigate geometric properties for screen conformal half lightlike submanifolds
M of a semi-Riemannian space form (M™%3(c), g), m > 2, with a conformal
Killing coscreen distribution. In the last Section 3, we prove our main classifi-
cation theorem for screen conformal Einstein half lightlike submanifolds M of a
Lorentzian space form with a conformal Killing coscreen distribution (Theorem
3.2). Recall the following structure equations.
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Let V be the Levi-Civita connection of M and P the projection morphism of
TM on S(T'M) with respect to the decomposition (1.1). Then the local Gauss
and Weingartan formulas M and S(T'M) are given respectively by

(1.4) VxY = VxY + B(X,Y)N + D(X, Y)u,
(1.5) VxN = —A, X +7(X)N + p(X)u,
(1.6) Vxu = —A,X + ¢(X)N;

(1.7) VxPY = V%PY + C(X, PY),

(1.8) Vxé = —ALX - r(X)S,

for any X, Y € I'(TM), where V and V* are induced linear connections on
TM and S(TM) respectively, the bilinear forms B and D on TM are called
the local lightlike and screen second fundamental forms of M respectively, C is
called the local radical second fundamental form on S(T'M). A, Af and A,
are linear operators on I'(T'M) and 7, p and ¢ are 1-forms on T'M.

Since V is torsion-free, V is also torsion-free, and B and D are symmetric.
From the facts B(X, Y) = g(VxY, ¢) and D(X, Y) = €g(VxY, u), we know
that B and D are independent of the choice of a screen distribution and satisfy

(1.9) B(X,8) =0, DX, ¢ = —ep(X), VX eI(TM).
The induced connection V on M is not metric and satisfies
(1.10) (Vxg)Y, Z) = BX, Y)n(Z) + B(X, Z)n(Y)
forall X, Y, Z e T'(TM), where n is a 1-form on T'M such that
(1.11) n(X)=g(X, N), VX e (TM).

But we show that V* is metric. The above three local second fundamental
forms on TM and S(TM) are related to their shape operators by

(1.12) B(X,Y) = g(A:X,Y), G(AEX, N) =0,
(1.13) C(X, PY) = g(ANX, PY), G(A X, N)=0,
(1.14) eD(X, PY) = g(A X, PY), gG(A,X, N) = ep(X),
(1.15) eD(X,Y) = g(A, X, Y) — (X)n(Y).

From (1.12), Ag is S(T'M)-valued and self-adjoint on I'(T'M) such that
(1.16) Aze = 0.

We denote by R, R and R* the curvature tensors of the Levi-Civita con-
nection V of M, the induced connection V of M and the induced connection
V* on S(T'M) respectively. Using the Gauss-Weingarten equations for M and
S(TM), we obtain the Gauss-Codazzi equations for M and S(TM):

(117) g(R(X,Y)Z, PW) = g(R(X,Y)Z, PW)
+ B(X,Z)C(Y,PW) - B(Y,Z)C(X,PW)

+e{D(X,Z)D(Y,PW) — D(Y, Z)D(X, PW)},
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(118)  g(R(X,Y)Z, &) = (VxB)(Y, Z) = (Vy B)(X, Z)
+ B(Y,Z)r(X) — B(X,Z)r(Y)
+D(Y, 2)6(X) = D(X, Z)6(Y),
(1.19)  g(R(X,Y)Z, N) = g(R(X,Y)Z, N)
+e{D(X, Z)p(Y) = DY, Z)p(X)},
+p(X)o(Y) = p(Y)d(X) — 2d7(X,Y),
+ B(Y, 2)p(X) = B(X, Z)p(Y)},
(1.22)
§(R(X,Y)PZ, PW) = g(R*(X,Y)PZ, PW)
+C(X,PZ)B(Y,PW) — C(Y, PZ)B(X, PW),
(1.23) g(R(X,Y)PZ, N) = (VxC)(Y,PZ) — (VyC)(X,PZ)
+C(X,PZ)r(Y)-C(Y,PZ)r(X)
forall X, Y, Z € T(T'M). The Ricci curvature tensor Ric of M and the induced
Ricci type tensor R(%2) of M are defined by
(1.24) Ric(X,Y) = trace{Z — R(Z,X)Y}, VX,Y eT(TM),
(1.25) RO2(XY) =trace{Z — R(Z,X)Y}, VX,Y e T(TM).
Consider the induced quasi-orthonormal frame fields {; W, } on M such that
RadTM = Span{{} and S(T'M) = Span{W,} and let E = {{, Wa;u, N} be

the corresponding frame fields on M. Let ¢, = g(W,, W,) be the sign of W,.
Using this quasi-orthonormal frame, (1.24) and (1.25) reduce respectively to

(1.26) Ric(X,Y) = i €0 §(R(Wa, X)Y, W,) + G(R(£, X)Y, N)

+ eg(R(u, X)Y, u) + g(R(N, X)Y, &),

(1.27) ROD(X,Y) = eag(R(Wa, X)Y, Wa) + g(R(§, X)Y, N)

a=1

for any X,Y € I'(TM). Substituting (1.17) and (1.19) in (1.26) and then,
using (1.12), (1.13) and (1.27), we obtain

(1.28)  RO(X,Y) = Ric(X,Y)+ B(X,Y)trA, + D(X,Y)trA,
- g(ANX’ AZY) - Eg(AuX; AuY) =+ p(X)¢(Y)
- g(R(&Y)Xa N) - eg(R(u,Y)X, u)

for any X, Y € T(TM). A tensor field R(>:?) of M is called its induced Ricci
tensor if it is symmetric. A symmetric R(%?) tensor will be denoted by Ric.
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Note 1. Using (1.20), (1.28) and the first Bianchi’s identity, we obtain
RO2(X,Y) - RO (Y, X) =2dr(X,Y), VX,Y e (TM).

It follow that R(*?) is a symmetric, if and only if, each 1-form 7 is closed,
ie, dr =0, on any U C M [6]. Therefore, suppose R(©:2) is symmetric, then
there exists a smooth function f on U such that 7 = df. Consequently we
get 7(X) = X(f). If we take £ = a&, it follows that 7(X) = 7(X) + X (Ina).
Setting o = exp(f) in this equation, we get 7(X) = 0 for any X € I'(T'M|,).
In the sequel, we call the pair {£, N} on U such that the corresponding 1-form
7 vanishes the canonical null pair[9] of M.

2. Screen conformal submanifolds

Definition. A half lightlike submanifold (M, g, S(TM)) of M is said to be
screen conformal [1] if there exists a non-vanishing smooth function ¢ on a
neighborhood U in M such that Ax = ¢ Ag, or equivalently,

(2.1) C(X,PY)=¢B(X,Y), VX,Y € [(TM).

In general, S(T'M) is not necessarily integrable. From (1.7) and (1.13),
we get g(A,X,Y) — g(X,A,Y) = C(X,Y) - C(Y,X) = n([X,Y]) for all
X, Y € T'(S(I'M)). Thus A, is self-adjoint on S(T'M) with respect to g if
and only if C is symmetric on S(T'M) if and only if n([X,Y]) = 0 for all
X,Y e D(S(TM)), i.e., S(TM) is integrable [4].

Note 2. For a screen conformal M, since C' is symmetric on S(TM), the
screen distribution S(T'M) is integrable. Thus M is locally a product manifold
L x M* where L is a null curve and M* is a leaf of S(TM) [5].

Example 2. Consider a surface M in R} given by the equation

g =\/2}+ 23, w5 =/1—13
Then we have TM = Span{¢,U,V} and TM~+ = Span{¢,u}, where
U= 2401 + 2104, V = 2503 — 305,
& = 2101 + 1205 + 2404, u = 1303 + 1505.

By direct calculations we check that Rad(T'M) is a distribution on M of rank
1 spanned by & Hence M is a half-lightlike submanifold of R such that
S(TM) = Span{U,V} and S(TM~*) = Span{u}. Then the lightlike transver-
sal bundle ltr(T'M) of the screen S(T'M) is given by

ltr(TM) = Span {N = 2—;(@81 — 2909 + z484)} ,
2

and the transversal bundle tr(T'M) is given by ¢r(T'M) = Span{N, u}.
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Denote by V the Levi-Civita connection on R3. By straightforward calcula-
tions, we obtain

VoU =€+ 22N, VyV =0, Vyé=2U+ :”21;45 — 224N,
2
_ 1 _
VuN = —U - 224N 4+ B¢ Gpu=0,
2z5 2 )
VyU=0, VyV=-2u Vyé=0, VyN=0, Vyu=2V,
2 2

— Ty T5T4 — T4 3 7 9
VeU =U + — N, Ve&=22U+ 2+ 2L )¢—a2N

§ +2$1§+ x1 e x1 +<2+2$§)§ ra

VeV =0, VeN=-N, Veu=0.

Then taking into account of Gauss and Weingarten formulas infer
x . 1
AU =-U, AV =0, ANU:fQ—wiU, A V=0, A=0,

TU)=7(V)=7() =0,  pU)=p(V)=p() =0.
Thus A, X = (1/2xﬁ)A§X for any X € I'(TM) and M is a screen conformal
half-lightlike submanifold of R3 with a conformal factor ¢ = 1/223.

Definition. A vector field X on M is said to be a conformal Killing [15]
if £Lxg = —26g, where § is a non-vanishing smooth function on M and Lx
denotes the Lie derivative with respect to X. In particular, if 6 = 0, then X
is called a Killing. A distribution G on M is said to be a conformal Killing
(Killing) if each vector field belonging to G is a conformal Killing (Killing).

Theorem 2.1. Let (M,g,S(TM)) be a half lightlike submanifold of a semi-

Riemannian manifold (M,g). Then the coscreen distribution is a conformal

Killing if and only if D(X,Y) =€edg(X,Y) for any X, Y e T(TM).

Proof. By straightforward calculations and use (1.6) and (1.15), we have
(£,9)(X.Y) =g(Vxu,Y) +g(X, Vyu),

for any X, Y € I'(T'M). Therefore, we obtain (£, g)(X,Y) = —2eD(X,Y). O

Let (M,g,S(T'M)) be a screen conformal half lightlike submanifold of a

semi-Riemannian space form (M (c),g) with a conformal Killing coscreen. For
all X, Y, Z, W € D(T'M), by (1.9), (1.14) and (1.15), we have

(2.2) D(X,)Y)=elg(X.,Y), &(X)=0, A,X=0PX +ep(X)E,.
Using (2.1) and (2.2), the Gauss equations (1.17) and (1.22) reduce to
(2.3) g(R(X,Y)Z, PW)
= (c+ed*){g(Y, 2)g(X, PW) — g(X, Z)g(Y, PW)}
+e{B(Y,Z)B(X,PW) - B(X,Z)B(Y,PW)},
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(2.4) g(R*(X,Y)PZ, PW)

= (c+ed*){g(Y, PZ)g(X,PW) — g(X, PZ)g(Y, PW)}

+20{B(Y, PZ)B(X,PW) — B(X,PZ)B(Y, PW)}

respectively. From (1.18) with ¢ = 0 and (1.21), we have
(25)  (VxB)(Y,2) - (Vy B)(X,Z) = B(X, Z)r(Y) — B(Y, Z)r(X),
(26)  (VxD)(Y,Z) - (VyD)(X, 2) = B(X, 2)p(Y) — B(Y, Z)p(X).
Differentiating the first equation of (2.2) and using (2.6), we have
(2.7) [50(X) = ep(X)}B(Y, Z) — {on(Y) — ep(Y )} B(X, 2)

— X[5]g(Y, 2) - Y[5) g(X, 2).
Replacing Y by ¢ in the last equation and using (1.9), we obtain

(2.8) {0 —ep(§)}B(X, 2) = £[0] g(X, 2).
Using (1.19), (1.23), (2.1) and (2.5), we obtain
(2.9) {Xlp] = 207(X)}B(Y, PZ) = {Y[¢] = 2¢7(Y)} B(X, PZ)

= {en(X) +6p(X)}g(Y, PZ) — {cn(Y) + 0p(Y)}g(X, PZ).
Replacing Y by £ in the last equation and using (1.9), we obtain
(2.10) {&lel = 207(§)}B(X, PZ) = (c + 0p(£))9(X, PZ).

Theorem 2.2. Let (M, g,S(T'M)) be a screen conformal half lightlike subman-
ifold of a semi-Riemannian space form (M™%3(c), §), m > 2, with a conformal
Killing coscreen distribution. Then we have ¢+ dp(€) = 0.

Proof. Assume that ¢+ dp(€) # 0. Then we have &[] — 2¢7(§) # 0 and B # 0
by virtue of (2.10). Thus, from (1.9), (2.1) and (2.10), we have

(2.11) B(X,Y)=0g9(X,Y), C(X,PY)=¢og(X,Y), VX, Y e T(TM),
where o = (¢ + 6p(€))(&[g] — 2¢7(£))~" # 0. From the first equation of (2.2)
and (2.11), M is totally umbilical in M and S(T'M) is also totally umbilical in
M and M. As M has a constant curvature ¢, from (2.4) and (2.11), we have
R*(X,Y)Z = (c+2¢0® + e*){g9(Y, 2)X — g(X, Z)Y}

for all X,Y,Z € T'(S(TM)). Let M* be the leaf of S(T'M) and Ric* be the
Ricci tensor of M*. Then, from the last equation, we have

Ric*(X,Y) = (c+2¢0% + %) (m — 1)g(X,Y), VX,Y € '(S(TM)).
Thus M* is Einstein. As m > 2, (¢ + 2po? + €52) is a constant and M* is a

space of constant curvature (c + 2po? + €§2). Differentiating the first equation
of (2.11) and using (1.10) and (2.5), we have

{Xlo] +07(X) = o*n(X)}g(Y, Z) = {Yo] + o7(Y) = o*n(Y)}g(X, Z)

for all X, Y, Z € T(TM). Replacing Y by ¢ in this equation, we have {[o] =
02 —o7(€). From (2.8) and (2.11), we have £[§] = a6 —eap(€). Since (c+2¢p0?+
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€6?) is a constant, we have &[c+2p0? +€6?] = 20(c+2¢0?+€5?) = 0. Therefore,
as 0 # 0, we have ¢ + 2¢0? 4+ €6° = 0 and consequently we get R* = 0. Thus
M* is a semi-Euclidean space. As the second fundamental form of the totally
umbilical semi-Euclidean space M* as a submanifold of the semi-Riemannian
space form M (c) vanishes [3, Section 2.3], we get C = 0. Consequently, from
(2.1), we get B =0 and ¢+ 0p(¢) = 0 due to (2.10). It is a contradiction to
¢+ 6p(€) # 0. Thus we have ¢+ dp(§) = 0. O

Corollary 2.3 ([10]). Let (M,g,S(T'M)) be a screen conformal half lightlike
submanifold of a semi-Riemannian space form (M™%3(c), g), m > 2, with a
Killing coscreen distribution. Then we have ¢ =0 and 6 = 0.

Theorem 2.4. Let (M, g, S(TM)) be a screen conformal Einstein half lightlike
submanifold of a semi-Riemannian space form (M™%3(c), g), m > 2, with a
conformal Killing coscreen distribution of conformal factor 6. Then the leaf
M* of S(TM) is an FEinstein manifold and § is a constant.

Proof. From (2.3) and (2.4), we show that
(2.12)
29(R(X,Y)PZ, PW)
= g(R*(X,Y)PZ, PW)+(c+ e6*){g(Y,PZ)g(X, PW)—g(X, PZ)g(Y, PW)}

for all X,Y,Z,W € I'(TM). Using the equations (1.27), (2.12) and the fact
that g(R(, X)Y, N) = (c+0p(£))g(X,Y) = 0, we get

2RO (X,Y) = Ric" (X,Y) + (m — 1)(c + e°)g(X, V).

This shows that the induced tensor R(®-2) on M is symmetric. Thus M admits
a symmetric Ricci tensor and R(©:2) — Rjc. Since M is Einstein, i.e., Ric = 9,
where v is a constant if m > 2, the last equation reduces to

(2.13)  Ric*(X,Y) = {2y — (m — 1)(c+ e®)}g(X,Y), VX,Y € T(TM).

Thus M* is also Einstein. Since m > 2, the function {2y — (m — 1)(c + €§?)}
is a constant. Therefore, the conformal factor ¢ is a constant. (I

Theorem 2.5. Let (M, g,S(T'M)) be a screen conformal Einstein half lightlike
submanifold of a semi-Riemannian space form (M™% 3(c), g), m > 2, with a
conformal Killing coscreen distribution of conformal factor 6. If either v #
(m —1)(c+ €d?) or rank A7 > 0, then we have ¢ + €62 = 0.

Proof. Since M is Einstein, the conformal factor ¢ is a constant by Theorem 2.4.
From (2.8) with ¢ + 6p(¢) = 0, we get {c + €§°} B(Y, Z) = 0, or equivalently,
{c+ €?}ALX = 0 for any X, Y € T(TM). First, if rank A7 > 0, we get
¢+ €d? = 0. Next, if ¢ + €42 # 0, then, since (c + €5§?) is a constant, we have
B(X,Y) =0 for any X, Y € I'(TM). Thus, from (1.27), (2.3) and the fact
that g(R(¢, X)Y,N) = (c+ §p(€))g(X,Y) = 0, we have v = (m — 1)(c + €4?).
This implies that if v # (m — 1)(c + €§?), then we get ¢ + €% = 0. O
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Recall the following notion of null sectional curvature [2, 5, 6, 8]. Let x € M
and & be a null vector of T,,M. A plane H of T,, M is called a null plane directed
by & if it contains &, g, (&, W) = 0 for any W € H and there exists W, € H such
that g, (W,, W,) # 0. Then, the null sectional curvature of H, with respect to
¢ and V, is defined as a real number

g2 (R(E, W)W, §)

K¢(H) = RUAGEE

where W ## 0 is any vector in H independent with £. It is easy to see that
K¢(H) is independent of W but depends in a quadratic fashion on (. An
n(> 3)-dimensional Lorentzian manifold is of constant curvature if and only if
its null sectional curvatures are everywhere zero [12].

Theorem 2.6. Let (M, g, S(TM)) be a screen conformal half lightlike subman-
ifold of a semi-Riemannian space form (M™% 3(c), g), m > 2, with a conformal
Killing coscreen distribution. Then every null plane H of T, M directed by &
has everywhere zero null sectional curvatures.

Proof. From (1.9), (1.19) and (2.3), we show that g(R(¢, X)Y, PW) = 0 and
g(R(&,X)Y,N) = (c+0p(£)g(X,Y) =0 for any X, Y € I'(TM). Thus the
curvature tensor R of M satisfies R(¢, X)Y =0 for any X, Y € I'(TM). Thus

Ke(H) = % = 0 for any null plane H of T, M directed by &. O

3. Einstein submanifolds

In this section, let (M, g, S(TM)) be a screen conformal half lightlike sub-

manifold of a Lorentzian space form (M (¢), §) with a conformal Killing coscreen
distribution. Then ¢ = 1,¢ = 0 and S(T'M) is a Riemannian and integrable
vector bundle. As M is a Lorentzian space form, then R(&,Y)X = cg(X,Y)¢,
R(u, X)Y = cg(X,Y)u and Ric(X,Y) = (m + 2)cg(X,Y). Thus the equation
(1.28) reduces to

(3.1) Ric(X,Y)=mecg(X,Y)+ B(X,Y)trA, + D(X,Y)trA,
— pg(AIX, ALY) — g(ALX, AY), VX, Y e T(TM).

From (1.16), ¢ is an eigenvector field of Ag corresponding to the eigenvalue
0. Since Af is I'(S(T'M))-valued real self-adjoint operator on I'(T'M) with
respect to g, A¢ have m real orthonormal eigenvector fields in S (TM) and is
diagonalizable. Consider a frame field of eigenvectors {¢, By, ..., En,} of Af
such that {E1, ..., Ep} is an orthonormal frame field of S(T'M). Then

Let M be an Einstein manifold. Then Ric = g and (3.1) reduces to
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where s = trAf is the trace of Af and F' = ¢~ {y —mec—dp(§) + (1 —m)d°} is
a smooth function. In case m > 2, we show that F = o= {y— (m—1)(c+4?%)}.
Put X =Y = E; in (3.2), the eigenvalue \; is a solution of

(3.3) 2? — sz + F=0.

The equation (3.3) has at most two distinct solutions. Assume that there exists
pe{0,1,...,m}such that \y =--- = A, =aand A\py1 =--- = X\, = 5, by
renumbering if necessary. From (3.3), we have

(34) s—a+B=pat(m—pB, af=F

Although S(T'M) is not unique, it is canonically isomorphic to the factor
vector bundle S(TM)* = TM/RadTM considered by Kupeli [11]. Thus all
S(TM) are isomorphic. For this reason, in the sequel, let (M, g, S(TM)) be a
screen conformal Einstein half lightlike submanifold equipped with the canon-
ical null pair {£, N} of a Lorentzian space form (M™*+3(c),g), m > 2, with a
conformal Killing coscreen distribution.

Theorem 3.1. Let (M, g, S(TM)) be a screen conformal Einstein half lightlike
submanifold of a Lorentzian space form (M™%3(c),g),m > 2, with a conformal
Killing coscreen distribution. Then M is locally a product manifold L x M, X
Mg, where L is a null curve and M, and Mpg are totally umbilical leaves of
some distributions of M.

Proof. If (3.3) has only one solution «, then, since M is screen conformal,
M =L x M* =L x M*x {z} for any z € M, where M, = M* is a leaf
of S(T'M) and Mg = {z} is a leaf of the trivial vector bundle {0}. Since
B(X,Y) = g(AZX,Y) = ag(X,Y) for all X,Y € I(TM), we get C(X,Y) =
pag(X,Y) for all X,Y € T(TM) by (2.1). Thus M* is totally umbilical and
{z} is also totally umbilical. In this case, our assertion is true.

Assume that (3.3) has exactly two distinct solutions o and 5. If p = 0 or
p = m, then we also show that M = L x M* = [ x M* x {z} for any € M,
and M* = M, and Mg = {z} (if p =m) or Mg and M, = {z} (if p =0). In
these cases, M* is totally umbilical. If 0 < p < m. Consider the following four
distributions D, Dg, D{, and D on M:

[(Do) ={X e'(TM) | AfX = aPX}, D =PDy;
P(Dp)={U e '(TM) | AgU = BPU}, Dj=PDg.
Then D, N Dg = Rad(TM) and D3 N Dj = {0}.
Since AZPX = AZX = aPX for all X € I'(D,) and AEPU = AZU = BPU
for all U € I'(Dg), PX and PU are eigenvector fields of the real symmetric
operator Ag corresponding to the different eigenvalues o and S respectively.

Thus PX L, PU and g(X,U) = g(PX,PU) = 0, that is, Do L, Ds. Also,
since B(X, U) = g(A{ X, U) = ag(PX, PU) = 0, we show that D, L, Dpg.
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For any € M, since {E;}i1<i<p and {Es}pti<a<m are p and (m — p)
smooth linearly independent vector fields of DJ and D7 respectively, D7, and
Dj are smooth distributions. Also, as {¢, E;}1<i<p and {€, Eq}pri<a<m are
(p+1) and (m —p+1) smooth linearly independent vector fields of D, and Dg
respectively, D, and Dg are also smooth distributions on M. Thus D;, and
Dj are orthogonal vector subbundle of S (TM), D2 and D} are non-degenerate
distributions of rank p and rank (m — p) respectively. Thus S(T'M) = D2 @orth
Dj. Consequently, TM = Rad(T M) @orth, D5, Sorth, Dj.

From (3.2), we show that (A7)* — (a+ 8)Af +aBP = 0. Let Y € I'm(Af —
aP), then there exists X € I'(T'M) such that Y = (A — aP)X. Then (A} —
BP)Y =0 and Y € I'(Dg). Thus Im(Af — aP) C I'(Dg). Since the morphism
Af — aP maps I'(T'M) onto I'(S(T'M)), we have Im(A; — aP) C I'(D3). By
duality, we also have Im(Af — BP) C I'(D,).

For X, Y € I'(D,) and U € I'(Dg), we have

(VxB)(Y,U) = —g((A; — aP)VxY,U) + o*g(X,Y)n(U)
and (VxB)(Y,U) = (Vy B)(X,U) due to (2.5). Thus g((A —aP)[X,Y],U) =
0. As Dj is non-degenerate and Im(A; — aP) C I'(Dj), we have (A7 —
aP)[X,Y] = 0. Thus [X,Y] € I'(D,) and D, is integrable. By duality, Dg
is also integrable. Since S(T'M) is integrable, for any X, Y € T'(D%), we have
[X,Y] € T(Dg) and [X,Y] € D(S(T'M)). Thus [X,Y] € T'(D2) and D% is
integrable. So is Dj.

For X, Y € T'(D,,) and Z € T'(T M), we show that

(VxB)(Y.2) = — g((A; — aP)VxY, Z) + o’g(X,Y)n(Z)
+(Xa) g(Y, 2) + o®n(Y) g(X, 2).

Using this equation and the facts that (VxB)(Y,Z) = (VyB)(X, Z) due to
(2.5) and (A — aP)[X, Y] =0 for any X, Y € I'(D,), we have

{Xa—o®n(X)}g(Y,Z2) = {Ya—a*n(Y)}g(X,Z), VX, Y € T(D,).

Therefore, for X, Y € I'(D%) and Z € T'(S(T'M)), we obtain (Xa)g(Y,Z) =
(Ya)g(X,Z). Since S(T'M) is non-degenerate, we have da(X)Y = da(Y)X.
Suppose there exists a vector field X, € I'(D?)) such that da(X,), # 0 at each
point x € M, then Y = fX, for any Y € I'(D%), where f is a smooth function.
It follows that all vectors from the fiber (Dg), are colinear with (X,),. It is a
contradiction as dim ((D),) = p > 1. Thus we have da|ps = 0. By duality,
we also have df]| Dy = 0. Thus « is a constant along D? and ( is a constant
along Dj. From the first equation of (3.4), we have (p —1)a = —(m —p —1)8.
Thus both « and 3 are constants along S(T'M).

Using (2.9) with ¢+ 0p(§) = 0 and 7 = 0, we have
(3:5)  (X¢)B(Y,Z) - (Yp)B(X, Z) = 6{p(PX)g(Y, Z) — p(PY)g(X, Z)}
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for any X, Y, Z €e (T M). Take X, Y, Z € T'(D3), then (3.5) reduces to
{a(Xp) = op(X)}Y = {a(Y) = op(Y)} X.

Since dim (Dg); > 1, we have (X¢)a = dp(X) for all X € I'(DZ). While,
take X € I'(D3) and Y, Z € I'(D;,) in (3.5), we have (X¢p)a = dp(X) for all
X € I'(Dj). Consequently, we obtain (Xp)a = dp(X) for all X € I'(S(TM)).
By duality, we get (X¢)B8 = 0p(X) for all X € T'(S(T'M)). Thus we have
(Xp)a = (X¢)p for all X € T'(S(TM)). Since o # B3, we have X = 0 for all
X € I'(S(TM)), that is, ¢ is a constant along S(T'M). Take X, Y € I'(D2)
in (2.10), we have {[pla = 0. Also, take X, Y € I'(D3) in (2.10), we have

&lelB = 0. Since («, B) # (0,0), we have £[p] = 0. Thus we have X¢ = 0 for
all X e T(TM), i.e., ¢ is a constant on M.

For all X € T(D5) and U € T(D3), since (VxB)(U, Z) = (VuB)(X, Z),
9({(Az — BP)VxU — (Af — aP)VuyX}, Z) = 0, VZ € T(S(TM)).

As S(T'M) is non-degenerate, we get (A7 — BP)VxU = (Af —aP)VyX. Since
the left term of the last equation is in I'(D7,) and the right term is in I'(D3)
and D5 N D = {0}, we have (A7 — fP)VxU = 0 and (A — aP)VyX = 0.
This imply that VxU € T'(Dg) and VyX € I'(D,). On the other hand,
VxU = V45U and Vy X = V;; X due to D, L pDg, we have

(3.6) VxU eT'(Dg), VuXeT(D;), YXeIl(D,),UeTl(Dj).
For X, Y € I'(Dy,) and U, V € I'(D3), since g(X,U) = 0, we have

g(Vy X, U)+¢g(X,VyU) =0, ¢g(VyvU,X)+g(UVyX)=0.
Using (3.6), we have g(X,VyU) = g(U, VyX) = 0. Thus we show that
(3.7) gVyX,U)=0, g(X, VyU) =0.

Since the leaf M* of S(T'M) is a semi-Riemannian manifold and S(TM) =
DS @®ortn Dg, where D3 and Dg are integrable and parallel distributions with
respect to the induced connection V* on M* due to (3.7), by the decomposition
theorem of de Rham [13], we have M* = M, x Mg, where M, and Mg are
some leaves of D, and Dg respectively. Thus we have our theorem. O

Theorem 3.2. Let (M,g,S(TM)) be a screen conformal half lightlike sub-
manifold of a Lorentzian space form (M™%3(c), §), m > 2, with a conformal
Killing coscreen distribution. If M is Einstein, i.e., Ric = g, then M is lo-
cally a product manifold L x M, x Mg, where L is a null curve and M, and
Mg are totally umbilical leaves of some distributions of M:

(1) If v # (m — 1)(c + &%), then either M, or Mg is an m-dimensional
Einstein Riemannian space form which is isometric to a sphere (v > 0)
or a hyperbolic space (v < 0) and the other is a point on M.
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(2) If vy = (m — 1)(c + 62), then M, is an (m — 1) or m-dimensional
FEinstein Riemannian space form which is isometric to a sphere (v > 0)
or a hyperbolic space (y < 0) or a Euclidean space (y =0) and Mgz is a
spacelike curve or a point on M.

Proof. First, we prove that y =0 and af =0if 0 <p<m: If 0 < p < m,
then, since rank AZ > 0, we have ¢ + 42 = 0 by Theorem 2.5. If p = 1 or
p =m — 1, then, from the facts that (p — 1)a+ (m —p—1)8 =0 and m > 2,
we show that if p = 1, then § = 0 and if p = m — 1, then « = 0. Thus
vy=paf =0. If 1 <p <m —1, then, from (3.7), we know that VyU has no
component of D,. Since the projection morphism P maps I'(Dg) onto I"(Dlg)
and S(TM) = Dg, ®ortn D},

VoU =P(VyU)+n(VyU)¢, P(VyU) e F(Dg).
It follows that

9(VxVuU,X)=g(VxP(VuU),X) +n(VuU)g(Vx§, X)
= —an(Vul)g(X, X).
As n(VyU) = —g(U,VuN) = g(U, A U) = pg(U, A{U) = ¢ g(U,U), we get
9(R(X, U)U, X) = — pafg(X, X)g(U,U).
While, from the Gauss equation (2.3), we have
9(R(X,U)U, X) = paBg(X, X)g(U,U),
due to ¢ + 62 = 0. From the last two equations, we get v = pa3 = 0.

(1) Let v # (m — 1)(c + 6%): In this case, we have ¢ 4+ §2 = 0. First, in case
52 # 4F. The equation (3.3) has two non-vanishing distinct solutions o and 3.
If 0 < p < m, then v = 0. This implies that v = (m — 1)(c + 62). Therefore,
we have p=0orp=m. If p=0,then M =L x M* = L x {z} x M* and
B(X,Y) = g(AZX, Y) = B8g(X,Y) for any X, Y € I'(TM). From this and
(2.1), we show that C(X,Y) = ¢f¢g(X,Y) for all X, Y € I(T'M). Thus M* is
totally umbilical. From (2.4) and (2.13), we have

RYX,Y)Z =205 {g(Y, 2)X — g(X, Z)Y},
Ric*(X,Y) = 2p8%(m — 1) g(X,Y), VX,Y, Z € T(S(TM)).

Thus M* is Einstein and 23?2 is a constant due to m > 2. By (2.13), we have
2y = 2pB2%. Therefore, M* is an Einstein space of constant curvature 2. By
duality, if p =m, then M = Lx M* =L x M* x {2} and B(X,Y) = ag(X,Y)
for any X, Y € I'(TM). Thus M is totally umbilical and M* is a totally
umbilical Einstein space of constant curvature 2y = 2pa?. In case s> = 4F.
The equation (3.3) has only one non-vanishing solution, named by « and « is
a unique eigenvalue of Ag. In this case, the first equation of (3.4) reduces to
2a0 = ma. This implies m = 2. Thus this case is an impossible one.
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(2) Let v = (m — 1)(c + 62): The equation (3.3) reduces to z(z — s) = 0.
In case s # 0. Let « = 0 and 8 = s. Then we have s = 8 = (m — p)g, ie.,
(m—p—1)pB=0. Sop=m—1. Thus M, is a totally geodesic (m — 1)-
dimensional Riemannian manifold and My is a spacelike curve in M. In the
sequel, let X, Y, Z € I'(D;,) and U € I'(D3). From (2.4), we have

R*(X,Y)Z = (c+ 6){g9(Y, 2)X — g(X, Z)Y},
Ric*(X,Y) = (c+6%)(m — 1)g(X,Y).

Thus g(R*(X,Y)Z, U) = 0. This implies 7o R*(X,Y)Z = R*(X,Y)Z, where
To i the projection morphism of T'(S(T'M)) on I'(D%) and 7, R* is the curva-
ture tensor of D?. Thus M, is an Einstein manifold of a constant curvature
(¢ + 6%). Therefore, M is locally a product L x M, x Mpg, where M, is an
(m — 1)-dimensional Einstein Riemannian space form of a constant curvature
(c+ 4?) and Mp is a spacelike curve in M. In case s = 0, we get @ = 3 = 0,
A =B =0and D} = D3 = S(I'M). Since M is screen conformal, we also
have C = A, = 0. Thus M* is totally geodesic. Using (2.4), we have

R*(X,Y)Z = (c+ ) {g(Y,2)X — g(X,Z)Y}

for all X,Y,Z € T'(S(T'M)). Thus M is locally a product L x M* x {z},
where M* is an m-dimensional Einstein Riemannian space form of a constant
curvature (¢ +6%) and {z} is a point. In these cases, since (¢ +6%) = L5, we
have sgn(c + 62) =sgn~y. Thus M, and M* are isometric to spheres (if v > 0)
or hyperbolic spaces (if v < 0) or Euclidean spaces (if v = 0). O

Corollary 3.3. Let (M, g,S(TM)) be a screen conformal Einstein half lightlike
submanifold of a Lorentzian space form (M™%3(c), ), m > 2, with a Killing
coscreen distribution. Then M is locally a product manifold L x M, x Mg,
where L is a null curve and M, and Mg are totally umbilical leaves of some
distributions of M:

(1) Ify #0, either M, or Mg is an m-dimensional Riemannian space form
which is isometric to a sphere (y > 0) or a hyperbolic space (v < 0) and
the other is a point in M.

(2) If vy =10, My is an (m — 1) or m-dimensional Euclidean space and Mg
is a spacelike curve or a point in M.

Proof. (1) Let v # 0: In case s> # 4F. If 0 < p < m, then y = 0. Thus p=0
or p = m. Either M, or Mg is a totally umbilical Riemannian manifold M*
of constant curvature 2pa? or 2¢3? respectively due to § = ¢ = 0. Thus M
is locally a product manifold L x M* x {z} or L x {z} x M*, where M* is
an m-dimensional totally umbilical Riemannian manifold of constant curvature
2y = 232 or 2y = 2pa? which is isometric to a sphere or a hyperbolic space
according to the sign of v and {z} is a point. The case s> = 4F is not appear
because m > 2.
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(2) Let v =0: In case s #0. Then « =0 and 8 = s. Since p=m — 1, M,
is an (m — 1)-dimensional Riemannian manifold of curvature ¢ + 6% = 0 and
Mg is a spacelike curve. Thus M is locally a product manifold L x M, x Mg,
where M, is an (m — 1)-dimensional Euclidean space and Mg is a spacelike
curve in M. In case s = 0. Then a = 3 = 0 and D, = D3 = S(T'M). Thus
M* is an m-dimensional Riemannian manifold of curvature ¢ + 62 = 0. Thus
M is locally a product L x M* x {z} where M* is an m-dimensional Euclidean
space, L is a null curve and {z} is a point. O
Example 3. Consider a surface M in Rj given by the equations
T3 = L(acl + z2), T4 = 1ln(l + (z1 — z2)%).

V2 2
Then TM = Span{U, V} and TM* = Span{¢, u}, where we set

U=V2(1+ (21— 22)%)01 + (1 + (21 — 22)?)05 + V2(z1 — 22)04,

V =V2(1+ (z1 — 22)%)02 + (1 + (21 — 22)3)3 — V2(21 — 22)04,

€= 01+ 0> + V20,

u=2(xy — 1) + V2(xy — 1) + (1 + (21 — 22))0s.
By direct calculations we check that Rad(TM) is a distribution on M of rank
1 spanned by &. Hence M is a half-lightlike submanifold of R3. Choose S(T'M)

and S(T'M~) spanned by V and u which are timelike and spacelike respectively.
We obtain the lightlike transversal vector bundle

1 1 1
ltr(TM) = Span {N = —531 + 532 + Eag } ,

and the transversal bundle tr(TM) = Span{N,u}. Denote by V the Levi-
Civita connection on R3 and by straightforward calculations we obtain
va = 2(1 + (.Tl — .TQ)Q) {2(1‘2 — .Tl)ag + \/5(.%‘2 — x1)63 + 64} R
?51/:0, ?szﬁxN:O, VX € F(TM).
Taking into account of Gauss and Weingarten formulae, we infer
B=0, A;=0, A, =0, Vx{=0, 7(X)=pX)=0,
2\/5(1'2 — 561)2 X2V
1+ (1 — x2)

for any X = X'¢ + X?V tangent to M. As A{X = A, X =0 for any X €
[(TM), M is a trivial screen conformal half lightlike submanifold of R3. Since
g(V,V) = —(1 + (21 — 22)*) we have

[D(X,§) =0, D(V,V)=2, VxV=

2

DWV.V)=0g(V,V), where §=—m—r—"5.
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Therefore M is a screen conformal half lightlike submanifold of R3 with a
conformal Killing coscreen distribution S(TM~). Thus M is locally a product
manifold M = Ly x Lo, where L; is a null curve tangent to Rad(T M) and Lo
is a timelike curve tangent to S(TM).
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