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EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS WITH

SPECIAL CONFORMALITIES

Dae Ho Jin

Abstract. In this paper, we study the geometry of Einstein half lightlike
submanifolds M of a semi-Riemannian space form M̄(c) subject to the
conditions: (a) M is screen conformal, and (b) the coscreen distribution of
M is a conformal Killing one. The main result is a classification theorem
for screen conformal Einstein half lightlike submanifolds of a Lorentzian
space form with a conformal Killing coscreen distribution.

1. Introduction

A submanifold M of a semi-Riemannian manifold (M̄, ḡ) is called a lightlike

submanifold of M̄ if its radical distribution Rad(TM) = TM∩TM⊥ is a vector
subbundle of the tangent bundle TM , of rank r(> 0). A codimension 2 lightlike
submanifold M is called a half lightlike submanifold if rank(Rad(TM)) = 1.
Then there exists two complementary non-degenerate distributions S(TM) and
S(TM⊥) of Rad(TM) in TM and TM⊥ respectively, which called the screen

and coscreen distribution on M , such that

(1.1) TM = Rad(TM)⊕orth S(TM) , TM⊥ = Rad(TM)⊕orth S(TM⊥),

where the symbol ⊕orth denotes the orthogonal direct sum. We denote such
a half lightlike submanifold by M = (M, g, S(TM)). Denote by F (M) the
algebra of smooth functions on M and by Γ(E) the F (M) module of smooth
sections of any vector bundle E over M . Then there exist a non-null section u
on S(TM⊥) and a null section ξ on Rad(TM) such that

ḡ(u, u) = ǫ, ḡ(ξ, v) = 0, ∀ v ∈ Γ(TM⊥),

where ǫ = ±1. Consider the orthogonal complementary distribution S(TM)⊥

to S(TM) in TM̄ . Certainly ξ and u belong to Γ(S(TM)⊥). Thus we have

S(TM)⊥ = S(TM⊥)⊕orth S(TM⊥)⊥,
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where S(TM⊥)⊥ is the orthogonal complementary to S(TM⊥) in S(TM)⊥.
For any null section ξ of Rad(TM) on a coordinate neighborhood U ⊂ M ,
there exists a uniquely defined vector field N ∈ Γ(ltr(TM)) [4] satisfying

(1.2) ḡ(ξ,N) = 1, ḡ(N,N) = ḡ(N,X) = ḡ(N, u) = 0, ∀ X ∈ Γ(S(TM)).

We call ltr(TM), N and tr(TM) = S(TM⊥) ⊕orth ltr(TM) the lightlike

transversal vector bundle, lightlike transversal vector field and transversal vec-

tor bundle of M with respect to S(TM) respectively. Then the tangent bundle
TM̄ of the ambient manifold M̄ is decomposed as follows:

TM̄ = TM ⊕ tr(TM) = {Rad(TM)⊕ tr(TM)} ⊕orth S(TM)(1.3)

= {Rad(TM)⊕ ltr(TM)} ⊕orth S(TM⊥)⊕orth S(TM).

Example 1. Suppose M is a surface M of R4
1 given by the equations

x3 =
√

x2
1 − x2

2, x4 =
√

1 + x2
1.

Then we derive TM = Span{ξ, U} and TM⊥ = Span{ξ, u}, where

U = x3x4∂1 + x1x4∂3 + x1x3∂4,

ξ = x1∂1 + x2∂2 + x3∂3, u = x1∂1 + x4∂4.

It follows that Rad(TM) is a distribution on M of rank 1 spanned by ξ. Hence
M is a half-lightlike submanifold of R4

1 such that S(TM) = Span{U} and
S(TM⊥) = Span{u}. Then the lightlike transversal bundle ltr(TM) and the
transversal bundle tr(TM) with respect to the screen distribution S(TM) are
given by ltr(TM) = Span{N} and tr(TM) = Span{N, u}, where

N = − 1

2x2
1

(x1∂1 − x2∂2 − x3∂3).

The classification of Einstein hypersurfaces M in Euclidean spaces R
n+1

was first studied by Fialkow [7] and Thomas [14] in the middle of 1930’s. It
was proved that if M is a connected Einstein hypersurface (n ≥ 3) such that
Ric = γg for some constant γ, then γ is non-negative. Moreover,

(1) if γ > 0, then M is contained in an n-sphere and
(2) if γ = 0, then M is locally isometric to R

n.
The objective of this paper is the study of half lightlike version of above clas-

sical results. For this reason, we consider only screen conformal half lightlike
submanifolds with a conformal Killing coscreen distribution. In Section 2, we
investigate geometric properties for screen conformal half lightlike submanifolds
M of a semi-Riemannian space form (M̄m+3(c), ḡ), m > 2, with a conformal
Killing coscreen distribution. In the last Section 3, we prove our main classifi-
cation theorem for screen conformal Einstein half lightlike submanifolds M of a
Lorentzian space form with a conformal Killing coscreen distribution (Theorem
3.2). Recall the following structure equations.
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Let ∇̄ be the Levi-Civita connection of M̄ and P the projection morphism of
TM on S(TM) with respect to the decomposition (1.1). Then the local Gauss
and Weingartan formulas M and S(TM) are given respectively by

∇̄XY = ∇XY +B(X, Y )N +D(X, Y )u,(1.4)

∇̄XN = −A
N
X + τ(X)N + ρ(X)u,(1.5)

∇̄Xu = −AuX + φ(X)N ;(1.6)

∇XPY = ∇∗
XPY + C(X, PY )ξ,(1.7)

∇Xξ = −A∗
ξX − τ(X)ξ,(1.8)

for any X, Y ∈ Γ(TM), where ∇ and ∇∗ are induced linear connections on
TM and S(TM) respectively, the bilinear forms B and D on TM are called
the local lightlike and screen second fundamental forms of M respectively, C is
called the local radical second fundamental form on S(TM). A

N
, A∗

ξ and Au

are linear operators on Γ(TM) and τ, ρ and φ are 1-forms on TM .
Since ∇̄ is torsion-free, ∇ is also torsion-free, and B and D are symmetric.

From the facts B(X, Y ) = ḡ(∇̄XY, ξ) and D(X, Y ) = ǫḡ(∇̄XY, u), we know
that B and D are independent of the choice of a screen distribution and satisfy

(1.9) B(X, ξ) = 0, D(X, ξ) = −ǫφ(X), ∀X ∈ Γ(TM).

The induced connection ∇ on M is not metric and satisfies

(1.10) (∇Xg)(Y, Z) = B(X, Y ) η(Z) +B(X, Z) η(Y )

for all X, Y, Z ∈ Γ(TM), where η is a 1-form on TM such that

(1.11) η(X) = ḡ(X, N), ∀X ∈ Γ(TM).

But we show that ∇∗ is metric. The above three local second fundamental
forms on TM and S(TM) are related to their shape operators by

B(X, Y ) = g(A∗
ξX, Y ), ḡ(A∗

ξX, N) = 0,(1.12)

C(X, PY ) = g(ANX, PY ), ḡ(A
N
X, N) = 0,(1.13)

ǫD(X, PY ) = g(AuX, PY ), ḡ(AuX, N) = ǫρ(X),(1.14)

ǫD(X, Y ) = g(AuX, Y )− φ(X)η(Y ).(1.15)

From (1.12), A∗
ξ is S(TM)-valued and self-adjoint on Γ(TM) such that

(1.16) A∗
ξξ = 0.

We denote by R̄ , R and R∗ the curvature tensors of the Levi-Civita con-
nection ∇̄ of M̄ , the induced connection ∇ of M and the induced connection
∇∗ on S(TM) respectively. Using the Gauss-Weingarten equations for M and
S(TM), we obtain the Gauss-Codazzi equations for M and S(TM):

ḡ(R̄(X,Y )Z, PW ) = g(R(X,Y )Z, PW )(1.17)

+B(X,Z)C(Y, PW )−B(Y, Z)C(X,PW )

+ ǫ{D(X,Z)D(Y, PW )−D(Y, Z)D(X,PW )},
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ḡ(R̄(X,Y )Z, ξ) = (∇XB)(Y, Z)− (∇Y B)(X,Z)(1.18)

+B(Y, Z)τ(X)−B(X,Z)τ(Y )

+D(Y, Z)φ(X)−D(X,Z)φ(Y ),

ḡ(R̄(X,Y )Z, N) = ḡ(R(X,Y )Z, N)(1.19)

+ ǫ{D(X,Z)ρ(Y )−D(Y, Z)ρ(X)},
ḡ(R̄(X,Y )ξ, N) = g(A∗

ξX, A
N
Y )− g(A∗

ξY, AN
X)(1.20)

+ ρ(X)φ(Y )− ρ(Y )φ(X)− 2dτ(X,Y ),

ḡ(R̄(X,Y )Z, u) = ǫ{(∇XD)(Y, Z)− (∇Y D)(X,Z)(1.21)

+B(Y, Z)ρ(X)−B(X,Z)ρ(Y )},

ḡ(R(X,Y )PZ, PW ) = g(R∗(X,Y )PZ, PW )

(1.22)

+ C(X,PZ)B(Y, PW )− C(Y, PZ)B(X,PW ),

g(R(X,Y )PZ, N) = (∇XC)(Y, PZ)− (∇Y C)(X,PZ)(1.23)

+ C(X,PZ)τ(Y )− C(Y, PZ)τ(X)

for all X, Y, Z ∈ Γ(TM). The Ricci curvature tensor R̄ic of M̄ and the induced
Ricci type tensor R(0, 2) of M are defined by

R̄ic(X,Y ) = trace{Z → R̄(Z,X)Y }, ∀X, Y ∈ Γ(TM̄),(1.24)

R(0, 2)(X,Y ) = trace{Z → R(Z,X)Y }, ∀X, Y ∈ Γ(TM).(1.25)

Consider the induced quasi-orthonormal frame fields {ξ;Wa} on M such that
RadTM = Span{ξ} and S(TM) = Span{Wa} and let E = {ξ,Wa;u,N} be
the corresponding frame fields on M̄ . Let ǫa = g(Wa,Wa) be the sign of Wα.
Using this quasi-orthonormal frame, (1.24) and (1.25) reduce respectively to

R̄ic(X,Y ) =
m
∑

a=1

ǫa ḡ(R̄(Wa, X)Y, Wa) + ḡ(R̄(ξ,X)Y, N)(1.26)

+ ǫ ḡ(R̄(u,X)Y, u) + ḡ(R̄(N,X)Y, ξ),

R(0, 2)(X,Y ) =

m
∑

a=1

ǫa g(R(Wa, X)Y, Wa) + ḡ(R(ξ,X)Y, N)(1.27)

for any X, Y ∈ Γ(TM). Substituting (1.17) and (1.19) in (1.26) and then,
using (1.12), (1.13) and (1.27), we obtain

R(0, 2)(X,Y ) = R̄ic(X,Y ) +B(X,Y )trA
N
+D(X,Y )trAu(1.28)

− g(A
N
X,A∗

ξY )− ǫ g(AuX,AuY ) + ρ(X)φ(Y )

− ḡ(R̄(ξ, Y )X, N)− ǫ ḡ(R̄(u, Y )X, u)

for any X, Y ∈ Γ(TM). A tensor field R(0, 2) of M is called its induced Ricci

tensor if it is symmetric. A symmetric R(0, 2) tensor will be denoted by Ric.
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Note 1. Using (1.20), (1.28) and the first Bianchi’s identity, we obtain

R(0, 2)(X,Y )−R(0, 2)(Y,X) = 2dτ(X,Y ), ∀ X,Y ∈ Γ(TM).

It follow that R(0, 2) is a symmetric, if and only if, each 1-form τ is closed,
i.e., dτ = 0, on any U ⊂ M [6]. Therefore, suppose R(0, 2) is symmetric, then
there exists a smooth function f on U such that τ = df . Consequently we
get τ(X) = X(f). If we take ξ̄ = αξ, it follows that τ(X) = τ̄ (X) +X(lnα).
Setting α = exp(f) in this equation, we get τ̄ (X) = 0 for any X ∈ Γ(TM| U ).
In the sequel, we call the pair {ξ, N} on U such that the corresponding 1-form
τ vanishes the canonical null pair [9] of M .

2. Screen conformal submanifolds

Definition. A half lightlike submanifold (M, g, S(TM)) of M̄ is said to be
screen conformal [1] if there exists a non-vanishing smooth function ϕ on a
neighborhood U in M such that AN = ϕA∗

ξ , or equivalently,

(2.1) C(X,PY ) = ϕB(X,Y ), ∀ X, Y ∈ Γ(TM).

In general, S(TM) is not necessarily integrable. From (1.7) and (1.13),
we get g(A

N
X,Y ) − g(X,A

N
Y ) = C(X,Y ) − C(Y,X) = η([X,Y ]) for all

X,Y ∈ Γ(S(TM)). Thus A
N

is self-adjoint on S(TM) with respect to g if
and only if C is symmetric on S(TM) if and only if η([X,Y ]) = 0 for all
X,Y ∈ Γ(S(TM)), i.e., S(TM) is integrable [4].

Note 2. For a screen conformal M , since C is symmetric on S(TM), the
screen distribution S(TM) is integrable. Thus M is locally a product manifold
L×M∗ where L is a null curve and M∗ is a leaf of S(TM) [5].

Example 2. Consider a surface M in R5
2 given by the equation

x4 =
√

x2
1 + x2

2, x5 =
√

1− x2
3.

Then we have TM = Span{ξ, U, V } and TM⊥ = Span{ξ, u}, where

U = x4∂1 + x1∂4, V = x5∂3 − x3∂5,

ξ = x1∂1 + x2∂2 + x4∂4, u = x3∂3 + x5∂5.

By direct calculations we check that Rad(TM) is a distribution on M of rank
1 spanned by ξ. Hence M is a half-lightlike submanifold of R5

2 such that
S(TM) = Span{U, V } and S(TM⊥) = Span{u}. Then the lightlike transver-
sal bundle ltr(TM) of the screen S(TM) is given by

ltr(TM) = Span

{

N =
1

2x2
2

(x1∂1 − x2∂2 + x4∂4)

}

,

and the transversal bundle tr(TM) is given by tr(TM) = Span{N, u}.
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Denote by ∇̄ the Levi-Civita connection on R5
2. By straightforward calcula-

tions, we obtain

∇̄UU = ξ + 2x2
2N, ∇̄UV = 0, ∇̄Uξ = 2U +

x1x4

2x2
2

ξ − x1x4N,

∇̄UN =
1

2x2
2

U − 2
x1x4

x2
2

N +
x1x4

x2
2

ξ, ∇̄Uu = 0,

∇̄V U = 0, ∇̄V V = −2u, ∇̄V ξ = 0, ∇̄V N = 0, ∇̄V u = 2V,

∇̄ξU = U +
x4

2x1
ξ +

x2
2x4

x1
N, ∇̄ξξ =

x4

x1
U +

(

3

2
+

x2
1

2x2
2

)

ξ − x2
4N,

∇̄ξV = 0, ∇̄ξN = −N, ∇̄ξu = 0.

Then taking into account of Gauss and Weingarten formulas infer

A∗
ξU = −U, A∗

ξV = 0, A
N
U = − 1

2x2
4

U, A
N
V = 0, A

N
ξ = 0,

τ(U) = τ(V ) = τ(ξ) = 0, ρ(U) = ρ(V ) = ρ(ξ) = 0.

Thus A
N
X = (1/2x2

4)A
∗
ξX for any X ∈ Γ(TM) and M is a screen conformal

half-lightlike submanifold of R5
2 with a conformal factor ϕ = 1/2x2

2.

Definition. A vector field X on M̄ is said to be a conformal Killing [15]
if L̄X ḡ = −2δḡ, where δ is a non-vanishing smooth function on M̄ and L̄X

denotes the Lie derivative with respect to X . In particular, if δ = 0, then X
is called a Killing. A distribution G on M̄ is said to be a conformal Killing

(Killing) if each vector field belonging to G is a conformal Killing (Killing).

Theorem 2.1. Let (M, g, S(TM)) be a half lightlike submanifold of a semi-

Riemannian manifold (M̄, ḡ). Then the coscreen distribution is a conformal

Killing if and only if D(X,Y ) = ǫδ g(X,Y ) for any X, Y ∈ Γ(TM).

Proof. By straightforward calculations and use (1.6) and (1.15), we have

(L̄
u
ḡ)(X,Y ) = ḡ(∇̄Xu, Y ) + ḡ(X, ∇̄Y u),

ḡ(∇̄Xu, Y ) = −g(AuX,Y ) + φ(X)η(Y ) = −ǫD(X,Y )

for anyX, Y ∈ Γ(TM). Therefore, we obtain (L̄
u
ḡ)(X,Y ) = − 2ǫD(X,Y ). �

Let (M, g, S(TM)) be a screen conformal half lightlike submanifold of a
semi-Riemannian space form (M̄(c), ḡ) with a conformal Killing coscreen. For
all X, Y, Z, W ∈ Γ(TM), by (1.9), (1.14) and (1.15), we have

(2.2) D(X,Y ) = ǫδ g(X,Y ), φ(X) = 0, AuX = δ PX + ǫρ(X)ξ.

Using (2.1) and (2.2), the Gauss equations (1.17) and (1.22) reduce to

g(R(X,Y )Z, PW )(2.3)

= (c+ ǫδ2){g(Y, Z)g(X,PW )− g(X,Z)g(Y, PW )}
+ ϕ{B(Y, Z)B(X,PW )−B(X,Z)B(Y, PW )},
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g(R∗(X,Y )PZ, PW )(2.4)

= (c+ ǫδ2){g(Y, PZ)g(X,PW )− g(X,PZ)g(Y, PW )}
+ 2ϕ{B(Y, PZ)B(X,PW )−B(X,PZ)B(Y, PW )}

respectively. From (1.18) with φ = 0 and (1.21), we have

(∇XB)(Y, Z)− (∇Y B)(X,Z) = B(X,Z)τ(Y )−B(Y, Z)τ(X),(2.5)

(∇XD)(Y, Z)− (∇Y D)(X,Z) = B(X,Z)ρ(Y )−B(Y, Z)ρ(X).(2.6)

Differentiating the first equation of (2.2) and using (2.6), we have

{δη(X)− ǫρ(X)}B(Y, Z)− {δη(Y )− ǫρ(Y )}B(X,Z)(2.7)

= X [δ] g(Y, Z)− Y [δ] g(X,Z).

Replacing Y by ξ in the last equation and using (1.9), we obtain

(2.8) {δ − ǫρ(ξ)}B(X,Z) = ξ[δ] g(X,Z).

Using (1.19), (1.23), (2.1) and (2.5), we obtain

{X [ϕ]− 2ϕτ(X)}B(Y, PZ)− {Y [ϕ]− 2ϕτ(Y )}B(X,PZ)(2.9)

= {c η(X) + δρ(X)}g(Y, PZ)− {c η(Y ) + δρ(Y )}g(X,PZ).

Replacing Y by ξ in the last equation and using (1.9), we obtain

(2.10) {ξ[ϕ]− 2ϕτ(ξ)}B(X,PZ) = (c+ δρ(ξ))g(X,PZ).

Theorem 2.2. Let (M, g, S(TM)) be a screen conformal half lightlike subman-

ifold of a semi-Riemannian space form (M̄m+3(c), ḡ), m > 2, with a conformal

Killing coscreen distribution. Then we have c+ δρ(ξ) = 0.

Proof. Assume that c+ δρ(ξ) 6= 0. Then we have ξ[ϕ]− 2ϕτ(ξ) 6= 0 and B 6= 0
by virtue of (2.10). Thus, from (1.9), (2.1) and (2.10), we have

(2.11) B(X,Y ) = σ g(X,Y ), C(X,PY ) = ϕσ g(X,Y ), ∀ X, Y ∈ Γ(TM),

where σ = (c + δρ(ξ))(ξ[ϕ] − 2ϕτ(ξ))−1 6= 0. From the first equation of (2.2)
and (2.11), M is totally umbilical in M̄ and S(TM) is also totally umbilical in
M and M̄ . As M̄ has a constant curvature c, from (2.4) and (2.11), we have

R∗(X,Y )Z = (c+ 2ϕσ2 + ǫδ2){g(Y, Z)X − g(X,Z)Y }
for all X,Y, Z ∈ Γ(S(TM)). Let M∗ be the leaf of S(TM) and Ric∗ be the
Ricci tensor of M∗. Then, from the last equation, we have

Ric∗(X,Y ) = (c+ 2ϕσ2 + ǫδ2)(m− 1)g(X,Y ), ∀X,Y ∈ Γ(S(TM)).

Thus M∗ is Einstein. As m > 2, (c + 2ϕσ2 + ǫδ2) is a constant and M∗ is a
space of constant curvature (c+2ϕσ2 + ǫδ2). Differentiating the first equation
of (2.11) and using (1.10) and (2.5), we have

{X [σ] + στ(X)− σ2η(X)}g(Y, Z) = {Y [σ] + στ(Y )− σ2η(Y )}g(X,Z)

for all X, Y, Z ∈ Γ(TM). Replacing Y by ξ in this equation, we have ξ[σ] =
σ2−στ(ξ). From (2.8) and (2.11), we have ξ[δ] = σδ−ǫσρ(ξ). Since (c+2ϕσ2+
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ǫδ2) is a constant, we have ξ[c+2ϕσ2+ǫδ2] = 2σ(c+2ϕσ2+ǫδ2) = 0. Therefore,
as σ 6= 0, we have c+ 2ϕσ2 + ǫδ2 = 0 and consequently we get R∗ = 0. Thus
M∗ is a semi-Euclidean space. As the second fundamental form of the totally
umbilical semi-Euclidean space M∗ as a submanifold of the semi-Riemannian
space form M̄(c) vanishes [3, Section 2.3], we get C = 0. Consequently, from
(2.1), we get B = 0 and c + δρ(ξ) = 0 due to (2.10). It is a contradiction to
c+ δρ(ξ) 6= 0. Thus we have c+ δρ(ξ) = 0. �

Corollary 2.3 ([10]). Let (M, g, S(TM)) be a screen conformal half lightlike

submanifold of a semi-Riemannian space form (M̄m+3(c), ḡ), m > 2, with a

Killing coscreen distribution. Then we have c = 0 and δ = 0.

Theorem 2.4. Let (M, g, S(TM)) be a screen conformal Einstein half lightlike

submanifold of a semi-Riemannian space form (M̄m+3(c), ḡ), m > 2, with a

conformal Killing coscreen distribution of conformal factor δ. Then the leaf

M∗ of S(TM) is an Einstein manifold and δ is a constant.

Proof. From (2.3) and (2.4), we show that

2g(R(X,Y )PZ, PW )

(2.12)

= g(R∗(X,Y )PZ, PW )+(c+ ǫδ2){g(Y, PZ)g(X,PW )−g(X,PZ)g(Y, PW )}
for all X,Y, Z,W ∈ Γ(TM). Using the equations (1.27), (2.12) and the fact
that ḡ(R(ξ,X)Y,N) = (c+ δρ(ξ))g(X,Y ) = 0, we get

2R(0, 2)(X,Y ) = Ric∗(X,Y ) + (m− 1)(c+ ǫδ2)g(X,Y ).

This shows that the induced tensor R(0, 2) on M is symmetric. Thus M admits
a symmetric Ricci tensor and R(0, 2) = Ric. Since M is Einstein, i.e., Ric = γg,
where γ is a constant if m > 2, the last equation reduces to

(2.13) Ric∗(X,Y ) = {2γ − (m− 1)(c+ ǫδ2)}g(X,Y ), ∀X,Y ∈ Γ(TM).

Thus M∗ is also Einstein. Since m > 2, the function {2γ − (m − 1)(c + ǫδ2)}
is a constant. Therefore, the conformal factor δ is a constant. �

Theorem 2.5. Let (M, g, S(TM)) be a screen conformal Einstein half lightlike

submanifold of a semi-Riemannian space form (M̄m+3(c), ḡ), m > 2, with a

conformal Killing coscreen distribution of conformal factor δ. If either γ 6=
(m− 1)(c+ ǫδ2) or rankA∗

ξ > 0, then we have c+ ǫδ2 = 0.

Proof. SinceM is Einstein, the conformal factor δ is a constant by Theorem 2.4.
From (2.8) with c + δρ(ξ) = 0, we get {c + ǫδ2}B(Y, Z) = 0, or equivalently,
{c + ǫδ2}A∗

ξX = 0 for any X, Y ∈ Γ(TM). First, if rankA∗
ξ > 0, we get

c + ǫδ2 = 0. Next, if c + ǫδ2 6= 0, then, since (c + ǫδ2) is a constant, we have
B(X,Y ) = 0 for any X, Y ∈ Γ(TM). Thus, from (1.27), (2.3) and the fact
that ḡ(R(ξ,X)Y,N) = (c + δρ(ξ))g(X,Y ) = 0, we have γ = (m − 1)(c+ ǫδ2).
This implies that if γ 6= (m− 1)(c+ ǫδ2), then we get c+ ǫδ2 = 0. �
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Recall the following notion of null sectional curvature [2, 5, 6, 8]. Let x ∈ M
and ξ be a null vector of TxM . A plane H of TxM is called a null plane directed
by ξ if it contains ξ, gx(ξ, W ) = 0 for anyW ∈ H and there existsWo ∈ H such
that gx(Wo, Wo) 6= 0. Then, the null sectional curvature of H , with respect to
ξ and ∇, is defined as a real number

Kξ(H) =
gx(R(ξ,W )W, ξ)

gx(W,W )
,

where W 6= 0 is any vector in H independent with ξ. It is easy to see that
Kξ(H) is independent of W but depends in a quadratic fashion on ξ. An
n(≥ 3)-dimensional Lorentzian manifold is of constant curvature if and only if
its null sectional curvatures are everywhere zero [12].

Theorem 2.6. Let (M, g, S(TM)) be a screen conformal half lightlike subman-

ifold of a semi-Riemannian space form (M̄m+3(c), ḡ), m > 2, with a conformal

Killing coscreen distribution. Then every null plane H of TxM directed by ξ
has everywhere zero null sectional curvatures.

Proof. From (1.9), (1.19) and (2.3), we show that g(R(ξ,X)Y, PW ) = 0 and
g(R(ξ,X)Y,N) = (c + δρ(ξ))g(X,Y ) = 0 for any X, Y ∈ Γ(TM). Thus the
curvature tensor R of M satisfies R(ξ,X)Y = 0 for any X, Y ∈ Γ(TM). Thus

Kξ(H) = gx(R(ξ,W )W, ξ)
gx(W,W ) = 0 for any null plane H of TxM directed by ξ. �

3. Einstein submanifolds

In this section, let (M, g, S(TM)) be a screen conformal half lightlike sub-
manifold of a Lorentzian space form (M̄(c), ḡ) with a conformal Killing coscreen
distribution. Then ǫ = 1, φ = 0 and S(TM) is a Riemannian and integrable
vector bundle. As M̄ is a Lorentzian space form, then R̄(ξ, Y )X = cḡ(X,Y )ξ,
R̄(u,X)Y = cḡ(X,Y )u and R̄ic(X,Y ) = (m+ 2)c ḡ(X,Y ). Thus the equation
(1.28) reduces to

Ric(X,Y ) = mcg(X,Y ) +B(X,Y ) trA
N
+D(X,Y ) trAu(3.1)

− ϕg(A∗
ξX,A∗

ξY )− g(AuX,AuY ), ∀X, Y ∈ Γ(TM).

From (1.16), ξ is an eigenvector field of A∗
ξ corresponding to the eigenvalue

0. Since A∗
ξ is Γ(S(TM))-valued real self-adjoint operator on Γ(TM) with

respect to g, A∗
ξ have m real orthonormal eigenvector fields in S(TM) and is

diagonalizable. Consider a frame field of eigenvectors {ξ, E1, . . . , Em} of A∗
ξ

such that {E1, . . . , Em} is an orthonormal frame field of S(TM). Then

A∗
ξEi = λiEi, 1 ≤ i ≤ m.

Let M be an Einstein manifold. Then Ric = γg and (3.1) reduces to

(3.2) g(A∗
ξX, A∗

ξY )− sg(A∗
ξX, Y ) + Fg(X,Y ) = 0,
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where s = trA∗
ξ is the trace of A∗

ξ and F = ϕ−1{γ−mc− δρ(ξ)+ (1−m)δ2} is

a smooth function. In case m > 2, we show that F = ϕ−1{γ− (m−1)(c+δ2)}.
Put X = Y = Ei in (3.2), the eigenvalue λi is a solution of

(3.3) x2 − sx+ F = 0.

The equation (3.3) has at most two distinct solutions. Assume that there exists
p ∈ {0, 1, . . . , m} such that λ1 = · · · = λp = α and λp+1 = · · · = λm = β, by
renumbering if necessary. From (3.3), we have

(3.4) s = α+ β = pα+ (m− p)β, αβ = F.

Although S(TM) is not unique, it is canonically isomorphic to the factor
vector bundle S(TM)♯ = TM/RadTM considered by Kupeli [11]. Thus all
S(TM) are isomorphic. For this reason, in the sequel, let (M, g, S(TM)) be a
screen conformal Einstein half lightlike submanifold equipped with the canon-
ical null pair {ξ,N} of a Lorentzian space form (M̄m+3(c), ḡ), m > 2, with a
conformal Killing coscreen distribution.

Theorem 3.1. Let (M, g, S(TM)) be a screen conformal Einstein half lightlike

submanifold of a Lorentzian space form (M̄m+3(c), ḡ),m > 2, with a conformal

Killing coscreen distribution. Then M is locally a product manifold L × Mα ×
Mβ, where L is a null curve and Mα and Mβ are totally umbilical leaves of

some distributions of M .

Proof. If (3.3) has only one solution α, then, since M is screen conformal,
M = L × M∗ ∼= L × M∗ × {x} for any x ∈ M̄ , where Mα = M∗ is a leaf
of S(TM) and Mβ = {x} is a leaf of the trivial vector bundle {0}. Since
B(X,Y ) = g(A∗

ξX,Y ) = αg(X,Y ) for all X,Y ∈ Γ(TM), we get C(X,Y ) =

ϕαg(X,Y ) for all X,Y ∈ Γ(TM) by (2.1). Thus M∗ is totally umbilical and
{x} is also totally umbilical. In this case, our assertion is true.

Assume that (3.3) has exactly two distinct solutions α and β. If p = 0 or
p = m, then we also show that M = L ×M∗ ∼= L×M∗ × {x} for any x ∈ M̄ ,
and M∗ = Mα and Mβ = {x} (if p = m) or Mβ and Mα = {x} (if p = 0). In
these cases, M∗ is totally umbilical. If 0 < p < m. Consider the following four
distributions Dα, Dβ , D

s
α and Ds

β on M :

Γ(Dα) = {X ∈ Γ(TM) | A∗
ξX = αPX}, Ds

α = PDα;

Γ(Dβ) = {U ∈ Γ(TM) | A∗
ξU = β PU}, Ds

β = PDβ .

Then Dα ∩Dβ = Rad(TM) and Ds
α ∩Ds

β = {0}.
Since A∗

ξPX = A∗
ξX = αPX for all X ∈ Γ(Dα) and A∗

ξPU = A∗
ξU = βPU

for all U ∈ Γ(Dβ), PX and PU are eigenvector fields of the real symmetric
operator A∗

ξ corresponding to the different eigenvalues α and β respectively.

Thus PX ⊥
g
PU and g(X,U) = g(PX,PU) = 0, that is, Dα ⊥

g
Dβ. Also,

since B(X, U) = g(A∗
ξX, U) = αg(PX, PU) = 0, we show that Dα ⊥

B
Dβ .
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For any x ∈ M , since {Ei}1≤i≤p and {Ea}p+1≤a≤m are p and (m − p)
smooth linearly independent vector fields of Ds

α and Ds
β respectively, Ds

α and

Ds
β are smooth distributions. Also, as {ξ, Ei}1≤i≤p and {ξ, Ea}p+1≤a≤m are

(p+1) and (m−p+1) smooth linearly independent vector fields of Dα and Dβ

respectively, Dα and Dβ are also smooth distributions on M . Thus Ds
α and

Ds
β are orthogonal vector subbundle of S(TM), Ds

α and Ds
β are non-degenerate

distributions of rank p and rank (m−p) respectively. Thus S(TM) = Ds
α⊕orth

Ds
β. Consequently, TM = Rad(TM)⊕orth Ds

α ⊕orth Ds
β.

From (3.2), we show that (A∗
ξ)

2 − (α+ β)A∗
ξ + αβP = 0. Let Y ∈ Im(A∗

ξ −
αP ), then there exists X ∈ Γ(TM) such that Y = (A∗

ξ − αP )X . Then (A∗
ξ −

βP )Y = 0 and Y ∈ Γ(Dβ). Thus Im(A∗
ξ − αP ) ⊂ Γ(Dβ). Since the morphism

A∗
ξ − αP maps Γ(TM) onto Γ(S(TM)), we have Im(A∗

ξ − αP ) ⊂ Γ(Ds
β). By

duality, we also have Im(A∗
ξ − βP ) ⊂ Γ(Ds

α).

For X, Y ∈ Γ(Dα) and U ∈ Γ(Dβ), we have

(∇XB)(Y, U) = −g((A∗
ξ − αP )∇XY, U) + α2g(X,Y )η(U)

and (∇XB)(Y, U) = (∇Y B)(X,U) due to (2.5). Thus g((A∗
ξ−αP )[X,Y ], U) =

0. As Ds
β is non-degenerate and Im(A∗

ξ − αP ) ⊂ Γ(Ds
β), we have (A∗

ξ −
αP )[X,Y ] = 0. Thus [X,Y ] ∈ Γ(Dα) and Dα is integrable. By duality, Dβ

is also integrable. Since S(TM) is integrable, for any X, Y ∈ Γ(Ds
α), we have

[X,Y ] ∈ Γ(Dα) and [X,Y ] ∈ Γ(S(TM)). Thus [X,Y ] ∈ Γ(Ds
α) and Ds

α is
integrable. So is Ds

β .

For X, Y ∈ Γ(Dα) and Z ∈ Γ(TM), we show that

(∇XB)(Y, Z) = − g((A∗
ξ − αP )∇XY, Z) + α2g(X,Y )η(Z)

+ (Xα) g(Y, Z) + α2η(Y ) g(X,Z).

Using this equation and the facts that (∇XB)(Y, Z) = (∇Y B)(X,Z) due to
(2.5) and (A∗

ξ − αP )[X, Y ] = 0 for any X, Y ∈ Γ(Dα), we have

{Xα− α2η(X)}g(Y, Z) = {Y α− α2η(Y )}g(X,Z), ∀X, Y ∈ Γ(Dα).

Therefore, for X, Y ∈ Γ(Ds
α) and Z ∈ Γ(S(TM)), we obtain (Xα)g(Y, Z) =

(Y α)g(X,Z). Since S(TM) is non-degenerate, we have dα(X)Y = dα(Y )X .
Suppose there exists a vector field Xo ∈ Γ(Ds

α) such that dα(Xo)x 6= 0 at each
point x ∈ M , then Y = fXo for any Y ∈ Γ(Ds

α), where f is a smooth function.
It follows that all vectors from the fiber (Ds

α)x are colinear with (Xo)x. It is a
contradiction as dim ((Ds

α)x) = p > 1. Thus we have dα|Ds
α
= 0. By duality,

we also have dβ|Ds
β
= 0. Thus α is a constant along Ds

α and β is a constant

along Ds
β. From the first equation of (3.4), we have (p− 1)α = −(m− p− 1)β.

Thus both α and β are constants along S(TM).

Using (2.9) with c+ δρ(ξ) = 0 and τ = 0, we have

(3.5) (Xϕ)B(Y, Z)− (Y ϕ)B(X,Z) = δ{ρ(PX)g(Y, Z)− ρ(PY )g(X,Z)}
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for any X, Y, Z ∈ Γ(TM). Take X, Y, Z ∈ Γ(Ds
α), then (3.5) reduces to

{α(Xϕ)− δρ(X)}Y = {α(Y ϕ)− δρ(Y )}X.

Since dim (Ds
α)x > 1, we have (Xϕ)α = δρ(X) for all X ∈ Γ(Ds

α). While,
take X ∈ Γ(Ds

β) and Y, Z ∈ Γ(Ds
α) in (3.5), we have (Xϕ)α = δρ(X) for all

X ∈ Γ(Ds
β). Consequently, we obtain (Xϕ)α = δρ(X) for all X ∈ Γ(S(TM)).

By duality, we get (Xϕ)β = δρ(X) for all X ∈ Γ(S(TM)). Thus we have
(Xϕ)α = (Xϕ)β for all X ∈ Γ(S(TM)). Since α 6= β, we have Xϕ = 0 for all
X ∈ Γ(S(TM)), that is, ϕ is a constant along S(TM). Take X, Y ∈ Γ(Ds

α)
in (2.10), we have ξ[ϕ]α = 0. Also, take X, Y ∈ Γ(Ds

β) in (2.10), we have

ξ[ϕ]β = 0. Since (α, β) 6= (0, 0), we have ξ[ϕ] = 0. Thus we have Xϕ = 0 for
all X ∈ Γ(TM), i.e., ϕ is a constant on M .

For all X ∈ Γ(Ds
α) and U ∈ Γ(Ds

β), since (∇XB)(U,Z) = (∇UB)(X,Z),

g({(A∗
ξ − βP )∇XU − (A∗

ξ − αP )∇UX}, Z) = 0, ∀Z ∈ Γ(S(TM)).

As S(TM) is non-degenerate, we get (A∗
ξ −βP )∇XU = (A∗

ξ −αP )∇UX. Since

the left term of the last equation is in Γ(Ds
α) and the right term is in Γ(Ds

β)

and Ds
α ∩ Ds

β = {0}, we have (A∗
ξ − βP )∇XU = 0 and (A∗

ξ − αP )∇UX = 0.

This imply that ∇XU ∈ Γ(Dβ) and ∇UX ∈ Γ(Dα). On the other hand,
∇XU = ∇∗

XU and ∇UX = ∇∗
UX due to Dα⊥BDβ , we have

(3.6) ∇XU ∈ Γ(Ds
β), ∇UX ∈ Γ(Ds

α), ∀X ∈ Γ(Ds
α), U ∈ Γ(Ds

β).

For X, Y ∈ Γ(Ds
α) and U, V ∈ Γ(Ds

β), since g(X,U) = 0, we have

g(∇Y X,U) + g(X,∇Y U) = 0, g(∇V U,X) + g(U,∇V X) = 0.

Using (3.6), we have g(X,∇Y U) = g(U,∇V X) = 0. Thus we show that

(3.7) g(∇Y X, U) = 0 , g(X, ∇V U) = 0.

Since the leaf M∗ of S(TM) is a semi-Riemannian manifold and S(TM) =
Ds

α ⊕orth Ds
β, where Ds

α and Ds
β are integrable and parallel distributions with

respect to the induced connection ∇∗ on M∗ due to (3.7), by the decomposition
theorem of de Rham [13], we have M∗ = Mα × Mβ , where Mα and Mβ are
some leaves of Ds

α and Ds
β respectively. Thus we have our theorem. �

Theorem 3.2. Let (M, g, S(TM)) be a screen conformal half lightlike sub-

manifold of a Lorentzian space form (M̄m+3(c), ḡ), m > 2, with a conformal

Killing coscreen distribution. If M is Einstein, i.e., Ric = γg, then M is lo-

cally a product manifold L ×Mα ×Mβ, where L is a null curve and Mα and

Mβ are totally umbilical leaves of some distributions of M :

(1) If γ 6= (m − 1)(c + δ2), then either Mα or Mβ is an m-dimensional

Einstein Riemannian space form which is isometric to a sphere (γ > 0)
or a hyperbolic space (γ < 0) and the other is a point on M .
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(2) If γ = (m − 1)(c + δ2), then Mα is an (m − 1) or m-dimensional

Einstein Riemannian space form which is isometric to a sphere (γ > 0)
or a hyperbolic space (γ < 0) or a Euclidean space (γ = 0) and Mβ is a

spacelike curve or a point on M .

Proof. First, we prove that γ = 0 and αβ = 0 if 0 < p < m: If 0 < p < m,
then, since rankA∗

ξ > 0, we have c + δ2 = 0 by Theorem 2.5. If p = 1 or

p = m− 1, then, from the facts that (p− 1)α+ (m − p− 1)β = 0 and m > 2,
we show that if p = 1, then β = 0 and if p = m − 1, then α = 0. Thus
γ = ϕαβ = 0. If 1 < p < m− 1, then, from (3.7), we know that ∇UU has no
component of Dα. Since the projection morphism P maps Γ(Dβ) onto Γ(Ds

β)

and S(TM) = Ds
α ⊕orth Ds

β,

∇UU = P (∇UU) + η(∇UU)ξ , P (∇UU) ∈ Γ(Ds
β).

It follows that

g(∇X∇UU,X) = g(∇XP (∇UU), X) + η(∇UU)g(∇Xξ,X)

= −αη(∇UU)g(X,X).

As η(∇UU) = −ḡ(U, ∇̄UN) = g(U,A
N
U) = ϕg(U,A∗

ξU) = ϕβ g(U,U), we get

g(R(X,U)U,X) = −ϕαβg(X,X)g(U,U).

While, from the Gauss equation (2.3), we have

g(R(X,U)U,X) = ϕαβg(X,X)g(U,U),

due to c+ δ2 = 0. From the last two equations, we get γ = ϕαβ = 0.

(1) Let γ 6= (m− 1)(c+ δ2): In this case, we have c+ δ2 = 0. First, in case
s2 6= 4F . The equation (3.3) has two non-vanishing distinct solutions α and β.
If 0 < p < m, then γ = 0. This implies that γ = (m − 1)(c + δ2). Therefore,
we have p = 0 or p = m. If p = 0, then M = L × M∗ = L × {x} × M∗ and
B(X,Y ) = g(A∗

ξX,Y ) = βg(X,Y ) for any X, Y ∈ Γ(TM). From this and

(2.1), we show that C(X,Y ) = ϕβg(X,Y ) for all X, Y ∈ Γ(TM). Thus M∗ is
totally umbilical. From (2.4) and (2.13), we have

R∗(X,Y )Z = 2ϕβ2 {g(Y, Z)X − g(X,Z)Y },
Ric∗(X,Y ) = 2ϕβ2(m− 1) g(X,Y ), ∀X,Y, Z ∈ Γ(S(TM)).

Thus M∗ is Einstein and 2ϕβ2 is a constant due to m > 2. By (2.13), we have
2γ = 2ϕβ2. Therefore, M∗ is an Einstein space of constant curvature 2γ. By
duality, if p = m, then M = L×M∗ = L×M∗×{x} and B(X,Y ) = αg(X,Y )
for any X, Y ∈ Γ(TM). Thus M is totally umbilical and M∗ is a totally
umbilical Einstein space of constant curvature 2γ = 2ϕα2. In case s2 = 4F .
The equation (3.3) has only one non-vanishing solution, named by α and α is
a unique eigenvalue of A∗

ξ . In this case, the first equation of (3.4) reduces to
2α = mα. This implies m = 2. Thus this case is an impossible one.
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(2) Let γ = (m − 1)(c + δ2): The equation (3.3) reduces to x(x − s) = 0.
In case s 6= 0. Let α = 0 and β = s. Then we have s = β = (m − p)β, i.e.,
(m − p − 1)β = 0. So p = m − 1. Thus Mα is a totally geodesic (m − 1)-
dimensional Riemannian manifold and Mβ is a spacelike curve in M . In the
sequel, let X, Y, Z ∈ Γ(Ds

α) and U ∈ Γ(Ds
β). From (2.4), we have

R∗(X,Y )Z = (c+ δ2){g(Y, Z)X − g(X,Z)Y },
Ric∗(X,Y ) = (c+ δ2)(m− 1)g(X,Y ).

Thus g(R∗(X,Y )Z, U) = 0. This implies παR
∗(X,Y )Z = R∗(X,Y )Z, where

πα is the projection morphism of Γ(S(TM)) on Γ(Ds
α) and παR

∗ is the curva-
ture tensor of Ds

α. Thus Mα is an Einstein manifold of a constant curvature
(c + δ2). Therefore, M is locally a product L × Mα × Mβ , where Mα is an
(m − 1)-dimensional Einstein Riemannian space form of a constant curvature
(c + δ2) and Mβ is a spacelike curve in M̄ . In case s = 0, we get α = β = 0,
A∗

ξ = B = 0 and Ds
α = Ds

β = S(TM). Since M is screen conformal, we also

have C = A
N
= 0. Thus M∗ is totally geodesic. Using (2.4), we have

R∗(X,Y )Z = (c+ δ2){g(Y, Z)X − g(X,Z)Y }

for all X,Y, Z ∈ Γ(S(TM)). Thus M is locally a product L × M∗ × {x},
where M∗ is an m-dimensional Einstein Riemannian space form of a constant
curvature (c+ δ2) and {x} is a point. In these cases, since (c+ δ2) = γ

m−1 , we

have sgn(c+ δ2) = sgn γ. Thus Mα and M∗ are isometric to spheres (if γ > 0)
or hyperbolic spaces (if γ < 0) or Euclidean spaces (if γ = 0). �

Corollary 3.3. Let (M, g, S(TM)) be a screen conformal Einstein half lightlike

submanifold of a Lorentzian space form (M̄m+3(c), ḡ), m > 2, with a Killing

coscreen distribution. Then M is locally a product manifold L × Mα × Mβ,

where L is a null curve and Mα and Mβ are totally umbilical leaves of some

distributions of M :

(1) If γ 6= 0, either Mα or Mβ is an m-dimensional Riemannian space form

which is isometric to a sphere (γ > 0) or a hyperbolic space (γ < 0) and
the other is a point in M .

(2) If γ = 0, Mα is an (m− 1) or m-dimensional Euclidean space and Mβ

is a spacelike curve or a point in M .

Proof. (1) Let γ 6= 0 : In case s2 6= 4F . If 0 < p < m, then γ = 0. Thus p = 0
or p = m. Either Mα or Mβ is a totally umbilical Riemannian manifold M∗

of constant curvature 2ϕα2 or 2ϕβ2 respectively due to δ = c = 0. Thus M
is locally a product manifold L × M∗ × {x} or L × {x} × M∗, where M∗ is
an m-dimensional totally umbilical Riemannian manifold of constant curvature
2γ = 2ϕβ2 or 2γ = 2ϕα2 which is isometric to a sphere or a hyperbolic space
according to the sign of γ and {x} is a point. The case s2 = 4F is not appear
because m > 2.
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(2) Let γ = 0 : In case s 6= 0. Then α = 0 and β = s. Since p = m− 1, Mα

is an (m − 1)-dimensional Riemannian manifold of curvature c + δ2 = 0 and
Mβ is a spacelike curve. Thus M is locally a product manifold L×Mα ×Mβ ,
where Mα is an (m − 1)-dimensional Euclidean space and Mβ is a spacelike
curve in M . In case s = 0. Then α = β = 0 and Ds

α = Ds
β = S(TM). Thus

M∗ is an m-dimensional Riemannian manifold of curvature c + δ2 = 0. Thus
M is locally a product L×M∗×{x} where M∗ is an m-dimensional Euclidean
space, L is a null curve and {x} is a point. �

Example 3. Consider a surface M in R4
2 given by the equations

x3 =
1√
2
(x1 + x2), x4 =

1

2
ln(1 + (x1 − x2)

2).

Then TM = Span{U, V } and TM⊥ = Span{ξ, u}, where we set

U =
√
2(1 + (x1 − x2)

2)∂1 + (1 + (x1 − x2)
2)∂3 +

√
2(x1 − x2)∂4,

V =
√
2(1 + (x1 − x2)

2)∂2 + (1 + (x1 − x2)
2)∂3 −

√
2(x1 − x2)∂4,

ξ = ∂1 + ∂2 +
√
2∂3,

u = 2(x2 − x1)∂2 +
√
2(x2 − x1)∂3 + (1 + (x1 − x2))∂4.

By direct calculations we check that Rad(TM) is a distribution on M of rank
1 spanned by ξ. Hence M is a half-lightlike submanifold of R4

2. Choose S(TM)
and S(TM⊥) spanned by V and u which are timelike and spacelike respectively.
We obtain the lightlike transversal vector bundle

ltr(TM) = Span

{

N = −1

2
∂1 +

1

2
∂2 +

1√
2
∂3

}

,

and the transversal bundle tr(TM) = Span{N, u}. Denote by ∇̄ the Levi-
Civita connection on R4

2 and by straightforward calculations we obtain

∇̄V V = 2(1 + (x1 − x2)
2)
{

2(x2 − x1)∂2 +
√
2(x2 − x1)∂3 + ∂4

}

,

∇̄ξV = 0, ∇̄Xξ = ∇̄XN = 0, ∀X ∈ Γ (TM).

Taking into account of Gauss and Weingarten formulae, we infer

B = 0, A∗
ξ = 0, A

N
= 0, ∇Xξ = 0, τ(X) = ρ(X) = 0,

[D(X, ξ) = 0, D(V, V ) = 2, ∇XV =
2
√
2(x2 − x1)

3

1 + (x1 − x2)2
X2V

for any X = X1ξ + X2V tangent to M . As A∗
ξX = A

N
X = 0 for any X ∈

Γ(TM), M is a trivial screen conformal half lightlike submanifold of R4
2. Since

g(V, V ) = −(1 + (x1 − x2)
4) we have

D(V, V ) = δg(V, V ) , where δ = − 2

(1 + (x1 − x2)4)
.
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Therefore M is a screen conformal half lightlike submanifold of R4
2 with a

conformal Killing coscreen distribution S(TM⊥). Thus M is locally a product
manifold M = L1 × L2, where L1 is a null curve tangent to Rad(TM) and L2

is a timelike curve tangent to S(TM).

References

[1] C. Atindogbe and K. L. Duggal, Conformal screen on lightlike hypersurfaces, Int. J.
Pure Appl. Math. 11 (2004), no. 4, 421–442.

[2] J. K. Beem, P. E. Ehrlich, and K. L. Easley, Global Lorentzian Geometry, Marcel Dekker,
Inc. New York, Second Edition, 1996.

[3] B. Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
[4] K. L. Duggal and A. Bejancu, Lightlike submanifolds of codimension two, Math. J.

Toyama Univ. 15 (1992), 59–82.
[5] , Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications,

Kluwer Acad. Publishers, Dordrecht, 1996.
[6] K. L. Duggal and D. H. Jin, Half-lightlike submanifolds of codimension two, Math. J.

Toyama Univ. 22 (1999), 121–161.
[7] A. Fialkow, Hypersurfaces of a space of constant curvature, Ann. of Math. (2) 39 (1938),

no. 4, 762–785.
[8] S. G. Harris, A triangle comparison theorem for Lorentz manifolds, Indiana Univ. Math.

J. 31 (1982), no. 3, 289–308.
[9] D. H. Jin, Einstein half lightlike submanifolds with a Killing co-screen distribution,

Honam Math. J. 30 (2008), no. 3, 487–504.
[10] , A characterization of screen conformal half lightlike submanifolds, Honam

Math. J. 31 (2009), no. 1, 17–23.
[11] D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications,

Kluwer Acad. Publishers, Dordrecht, 1996.
[12] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic

Press, 1983.
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