EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS WITH SPECIAL CONFORMALITIES

Dae Ho Jin

Abstract

In this paper, we study the geometry of Einstein half lightlike submanifolds M of a semi-Riemannian space form $\bar{M}(c)$ subject to the conditions: (a) M is screen conformal, and (b) the coscreen distribution of M is a conformal Killing one. The main result is a classification theorem for screen conformal Einstein half lightlike submanifolds of a Lorentzian space form with a conformal Killing coscreen distribution.

1. Introduction

A submanifold M of a semi-Riemannian manifold (\bar{M}, \bar{g}) is called a lightlike submanifold of \bar{M} if its radical distribution $\operatorname{Rad}(T M)=T M \cap T M^{\perp}$ is a vector subbundle of the tangent bundle $T M$, of rank $r(>0)$. A codimension 2 lightlike submanifold M is called a half lightlike submanifold if $\operatorname{rank}(\operatorname{Rad}(T M))=1$. Then there exists two complementary non-degenerate distributions $S(T M)$ and $S\left(T M^{\perp}\right)$ of $\operatorname{Rad}(T M)$ in $T M$ and $T M^{\perp}$ respectively, which called the screen and coscreen distribution on M, such that

$$
\text { (1.1) } \quad T M=\operatorname{Rad}(T M) \oplus_{\text {orth }} S(T M), T M^{\perp}=\operatorname{Rad}(T M) \oplus_{\text {orth }} S\left(T M^{\perp}\right)
$$

where the symbol $\oplus_{\text {orth }}$ denotes the orthogonal direct sum. We denote such a half lightlike submanifold by $M=(M, g, S(T M))$. Denote by $F(M)$ the algebra of smooth functions on M and by $\Gamma(E)$ the $F(M)$ module of smooth sections of any vector bundle E over M. Then there exist a non-null section u on $S\left(T M^{\perp}\right)$ and a null section ξ on $\operatorname{Rad}(T M)$ such that

$$
\bar{g}(u, u)=\epsilon, \quad \bar{g}(\xi, v)=0, \forall v \in \Gamma\left(T M^{\perp}\right)
$$

where $\epsilon= \pm 1$. Consider the orthogonal complementary distribution $S(T M)^{\perp}$ to $S(T M)$ in $T \bar{M}$. Certainly ξ and u belong to $\Gamma\left(S(T M)^{\perp}\right)$. Thus we have

$$
S(T M)^{\perp}=S\left(T M^{\perp}\right) \oplus_{\text {orth }} S\left(T M^{\perp}\right)^{\perp}
$$

Received June 18, 2009.
2010 Mathematics Subject Classification. Primary 53C25, 53C40, 53C50.
Key words and phrases. half lightlike submanifold, screen conformal, conformal Killing distribution.
where $S\left(T M^{\perp}\right)^{\perp}$ is the orthogonal complementary to $S\left(T M^{\perp}\right)$ in $S(T M)^{\perp}$. For any null section ξ of $\operatorname{Rad}(T M)$ on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a uniquely defined vector field $N \in \Gamma(l \operatorname{tr}(T M))[4]$ satisfying

$$
\begin{equation*}
\bar{g}(\xi, N)=1, \bar{g}(N, N)=\bar{g}(N, X)=\bar{g}(N, u)=0, \forall X \in \Gamma(S(T M)) . \tag{1.2}
\end{equation*}
$$

We call $l \operatorname{tr}(T M), N$ and $\operatorname{tr}(T M)=S\left(T M^{\perp}\right) \oplus_{\text {orth }} l \operatorname{tr}(T M)$ the lightlike transversal vector bundle, lightlike transversal vector field and transversal vector bundle of M with respect to $S(T M)$ respectively. Then the tangent bundle $T \bar{M}$ of the ambient manifold \bar{M} is decomposed as follows:

$$
\begin{align*}
T \bar{M} & =T M \oplus \operatorname{tr}(T M)=\{\operatorname{Rad}(T M) \oplus \operatorname{tr}(T M)\} \oplus_{\text {orth }} S(T M) \tag{1.3}\\
& =\{\operatorname{Rad}(T M) \oplus l \operatorname{tr}(T M)\} \oplus_{\text {orth }} S\left(T M^{\perp}\right) \oplus_{\text {orth }} S(T M) .
\end{align*}
$$

Example 1. Suppose M is a surface M of R_{1}^{4} given by the equations

$$
x_{3}=\sqrt{x_{1}^{2}-x_{2}^{2}}, \quad x_{4}=\sqrt{1+x_{1}^{2}} .
$$

Then we derive $T M=\operatorname{Span}\{\xi, U\}$ and $T M^{\perp}=\operatorname{Span}\{\xi, u\}$, where

$$
\begin{aligned}
& U=x_{3} x_{4} \partial_{1}+x_{1} x_{4} \partial_{3}+x_{1} x_{3} \partial_{4} \\
& \xi=x_{1} \partial_{1}+x_{2} \partial_{2}+x_{3} \partial_{3}, \quad u=x_{1} \partial_{1}+x_{4} \partial_{4}
\end{aligned}
$$

It follows that $\operatorname{Rad}(T M)$ is a distribution on M of rank 1 spanned by ξ. Hence M is a half-lightlike submanifold of R_{1}^{4} such that $S(T M)=\operatorname{Span}\{U\}$ and $S\left(T M^{\perp}\right)=\operatorname{Span}\{u\}$. Then the lightlike transversal bundle $\operatorname{ltr}(T M)$ and the transversal bundle $\operatorname{tr}(T M)$ with respect to the screen distribution $S(T M)$ are given by $\operatorname{ltr}(T M)=\operatorname{Span}\{N\}$ and $\operatorname{tr}(T M)=\operatorname{Span}\{N, u\}$, where

$$
N=-\frac{1}{2 x_{1}^{2}}\left(x_{1} \partial_{1}-x_{2} \partial_{2}-x_{3} \partial_{3}\right) .
$$

The classification of Einstein hypersurfaces M in Euclidean spaces \mathbb{R}^{n+1} was first studied by Fialkow [7] and Thomas [14] in the middle of 1930's. It was proved that if M is a connected Einstein hypersurface $(n \geq 3)$ such that Ric $=\gamma g$ for some constant γ, then γ is non-negative. Moreover,
(1) if $\gamma>0$, then M is contained in an n-sphere and
(2) if $\gamma=0$, then M is locally isometric to \mathbb{R}^{n}.

The objective of this paper is the study of half lightlike version of above classical results. For this reason, we consider only screen conformal half lightlike submanifolds with a conformal Killing coscreen distribution. In Section 2, we investigate geometric properties for screen conformal half lightlike submanifolds M of a semi-Riemannian space form $\left(\bar{M}^{m+3}(c), \bar{g}\right), m>2$, with a conformal Killing coscreen distribution. In the last Section 3, we prove our main classification theorem for screen conformal Einstein half lightlike submanifolds M of a Lorentzian space form with a conformal Killing coscreen distribution (Theorem 3.2). Recall the following structure equations.

Let $\bar{\nabla}$ be the Levi-Civita connection of \bar{M} and P the projection morphism of $T M$ on $S(T M)$ with respect to the decomposition (1.1). Then the local Gauss and Weingartan formulas M and $S(T M)$ are given respectively by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) N+D(X, Y) u \tag{1.4}\\
& \bar{\nabla}_{X} N=-A_{N} X+\tau(X) N+\rho(X) u \tag{1.5}\\
& \bar{\nabla}_{X} u=-A_{u} X+\phi(X) N \tag{1.6}\\
& \nabla_{X} P Y=\nabla_{X}^{*} P Y+C(X, P Y) \xi \tag{1.7}\\
& \nabla_{X} \xi=-A_{\xi}^{*} X-\tau(X) \xi \tag{1.8}
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$, where ∇ and ∇^{*} are induced linear connections on $T M$ and $S(T M)$ respectively, the bilinear forms B and D on $T M$ are called the local lightlike and screen second fundamental forms of M respectively, C is called the local radical second fundamental form on $S(T M) . A_{N}, A_{\xi}^{*}$ and A_{u} are linear operators on $\Gamma(T M)$ and τ, ρ and ϕ are 1-forms on $T M$.

Since $\bar{\nabla}$ is torsion-free, ∇ is also torsion-free, and B and D are symmetric. From the facts $B(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, \xi\right)$ and $D(X, Y)=\epsilon \bar{g}\left(\bar{\nabla}_{X} Y, u\right)$, we know that B and D are independent of the choice of a screen distribution and satisfy

$$
\begin{equation*}
B(X, \xi)=0, \quad D(X, \xi)=-\epsilon \phi(X), \quad \forall X \in \Gamma(T M) \tag{1.9}
\end{equation*}
$$

The induced connection ∇ on M is not metric and satisfies

$$
\begin{equation*}
\left(\nabla_{X} g\right)(Y, Z)=B(X, Y) \eta(Z)+B(X, Z) \eta(Y) \tag{1.10}
\end{equation*}
$$

for all $X, Y, Z \in \Gamma(T M)$, where η is a 1-form on $T M$ such that

$$
\begin{equation*}
\eta(X)=\bar{g}(X, N), \forall X \in \Gamma(T M) \tag{1.11}
\end{equation*}
$$

But we show that ∇^{*} is metric. The above three local second fundamental forms on $T M$ and $S(T M)$ are related to their shape operators by

$$
\begin{align*}
& B(X, Y)=g\left(A_{\xi}^{*} X, Y\right), \tag{1.12}\\
& C(X, P Y)=g\left(A_{N} X, P Y\right), \quad \bar{g}\left(A_{\xi}^{*} X, N\right)=0 \tag{1.13}\\
& \epsilon D(X, P Y)=g\left(A_{u} X, P Y\right), \quad \bar{g}\left(A_{u} X, N\right)=\epsilon \tag{1.14}\\
& \epsilon D(X, Y)=g\left(A_{u} X, Y\right)-\phi(X) \eta(Y) \tag{1.15}
\end{align*}
$$

From (1.12), A_{ξ}^{*} is $S(T M)$-valued and self-adjoint on $\Gamma(T M)$ such that

$$
\begin{equation*}
A_{\xi}^{*} \xi=0 \tag{1.16}
\end{equation*}
$$

We denote by \bar{R}, R and R^{*} the curvature tensors of the Levi-Civita connection $\bar{\nabla}$ of \bar{M}, the induced connection ∇ of M and the induced connection ∇^{*} on $S(T M)$ respectively. Using the Gauss-Weingarten equations for M and $S(T M)$, we obtain the Gauss-Codazzi equations for M and $S(T M)$:
(1.17) $\bar{g}(\bar{R}(X, Y) Z, P W)=g(R(X, Y) Z, P W)$

$$
\begin{aligned}
& +B(X, Z) C(Y, P W)-B(Y, Z) C(X, P W) \\
& +\epsilon\{D(X, Z) D(Y, P W)-D(Y, Z) D(X, P W)\}
\end{aligned}
$$

$$
\begin{align*}
\bar{g}(\bar{R}(X, Y) Z, \xi)= & \left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z) \tag{1.18}\\
& +B(Y, Z) \tau(X)-B(X, Z) \tau(Y) \\
& +D(Y, Z) \phi(X)-D(X, Z) \phi(Y),
\end{align*}
$$

$$
\begin{align*}
\bar{g}(\bar{R}(X, Y) Z, N)= & \bar{g}(R(X, Y) Z, N) \tag{1.19}\\
& +\epsilon\{D(X, Z) \rho(Y)-D(Y, Z) \rho(X)\} \\
\bar{g}(\bar{R}(X, Y) \xi, N)= & g\left(A_{\xi}^{*} X, A_{N} Y\right)-g\left(A_{\xi}^{*} Y, A_{N} X\right) \tag{1.20}\\
& +\rho(X) \phi(Y)-\rho(Y) \phi(X)-2 d \tau(X, Y) \\
\bar{g}(\bar{R}(X, Y) Z, u)= & \epsilon\left\{\left(\nabla_{X} D\right)(Y, Z)-\left(\nabla_{Y} D\right)(X, Z)\right. \tag{1.21}\\
& +B(Y, Z) \rho(X)-B(X, Z) \rho(Y)\} \tag{1.22}
\end{align*}
$$

$\bar{g}(R(X, Y) P Z, P W)=g\left(R^{*}(X, Y) P Z, P W\right)$

$$
+C(X, P Z) B(Y, P W)-C(Y, P Z) B(X, P W)
$$

$$
\begin{align*}
g(R(X, Y) P Z, N)= & \left(\nabla_{X} C\right)(Y, P Z)-\left(\nabla_{Y} C\right)(X, P Z) \tag{1.23}\\
& +C(X, P Z) \tau(Y)-C(Y, P Z) \tau(X)
\end{align*}
$$

for all $X, Y, Z \in \Gamma(T M)$. The Ricci curvature tensor Ric of \bar{M} and the induced Ricci type tensor $R^{(0,2)}$ of M are defined by

$$
\begin{align*}
& \overline{\operatorname{Ric}}(X, Y)=\operatorname{trace}\{Z \rightarrow \bar{R}(Z, X) Y\}, \quad \forall X, Y \in \Gamma(T \bar{M}), \tag{1.24}\\
& R^{(0,2)}(X, Y)=\operatorname{trace}\{Z \rightarrow R(Z, X) Y\}, \quad \forall X, Y \in \Gamma(T M) \tag{1.25}
\end{align*}
$$

Consider the induced quasi-orthonormal frame fields $\left\{\xi ; W_{a}\right\}$ on M such that $\operatorname{RadTM}=\operatorname{Span}\{\xi\}$ and $S(T M)=\operatorname{Span}\left\{W_{a}\right\}$ and let $E=\left\{\xi, W_{a} ; u, N\right\}$ be the corresponding frame fields on \bar{M}. Let $\epsilon_{a}=g\left(W_{a}, W_{a}\right)$ be the sign of W_{α}. Using this quasi-orthonormal frame, (1.24) and (1.25) reduce respectively to

$$
\begin{align*}
\overline{\operatorname{Ric}}(X, Y)=\sum_{a=1}^{m} & \epsilon_{a} \bar{g}\left(\bar{R}\left(W_{a}, X\right) Y, W_{a}\right)+\bar{g}(\bar{R}(\xi, X) Y, N) \tag{1.26}\\
& +\epsilon \bar{g}(\bar{R}(u, X) Y, u)+\bar{g}(\bar{R}(N, X) Y, \xi), \\
R^{(0,2)}(X, Y)= & \sum_{a=1}^{m} \epsilon_{a} g\left(R\left(W_{a}, X\right) Y, W_{a}\right)+\bar{g}(R(\xi, X) Y, N) \tag{1.27}
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$. Substituting (1.17) and (1.19) in (1.26) and then, using (1.12), (1.13) and (1.27), we obtain

$$
\begin{align*}
R^{(0,2)}(X, Y)= & \overline{\operatorname{Ric}}(X, Y)+B(X, Y) \operatorname{tr} A_{N}+D(X, Y) \operatorname{tr} A_{u} \tag{1.28}\\
& -g\left(A_{N} X, A_{\xi}^{*} Y\right)-\epsilon g\left(A_{u} X, A_{u} Y\right)+\rho(X) \phi(Y) \\
& -\bar{g}(\bar{R}(\xi, Y) X, N)-\epsilon \bar{g}(\bar{R}(u, Y) X, u)
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$. A tensor field $R^{(0,2)}$ of M is called its induced Ricci tensor if it is symmetric. A symmetric $R^{(0,2)}$ tensor will be denoted by Ric.

Note 1. Using (1.20), (1.28) and the first Bianchi's identity, we obtain

$$
R^{(0,2)}(X, Y)-R^{(0,2)}(Y, X)=2 d \tau(X, Y), \quad \forall X, Y \in \Gamma(T M)
$$

It follow that $R^{(0,2)}$ is a symmetric, if and only if, each 1 -form τ is closed, i.e., $d \tau=0$, on any $\mathcal{U} \subset M$ [6]. Therefore, suppose $R^{(0,2)}$ is symmetric, then there exists a smooth function f on \mathcal{U} such that $\tau=d f$. Consequently we get $\tau(X)=X(f)$. If we take $\bar{\xi}=\alpha \xi$, it follows that $\tau(X)=\bar{\tau}(X)+X(\ln \alpha)$. Setting $\alpha=\exp (f)$ in this equation, we get $\bar{\tau}(X)=0$ for any $X \in \Gamma\left(T M_{\mid \mathcal{U}}\right)$. In the sequel, we call the pair $\{\xi, N\}$ on \mathcal{U} such that the corresponding 1-form τ vanishes the canonical null pair [9] of M.

2. Screen conformal submanifolds

Definition. A half lightlike submanifold ($M, g, S(T M)$) of \bar{M} is said to be screen conformal [1] if there exists a non-vanishing smooth function φ on a neighborhood \mathcal{U} in M such that $A_{N}=\varphi A_{\xi}^{*}$, or equivalently,

$$
\begin{equation*}
C(X, P Y)=\varphi B(X, Y), \forall X, Y \in \Gamma(T M) \tag{2.1}
\end{equation*}
$$

In general, $S(T M)$ is not necessarily integrable. From (1.7) and (1.13), we get $g\left(A_{N} X, Y\right)-g\left(X, A_{N} Y\right)=C(X, Y)-C(Y, X)=\eta([X, Y])$ for all $X, Y \in \Gamma(S(T M))$. Thus A_{N} is self-adjoint on $S(T M)$ with respect to g if and only if C is symmetric on $S(T M)$ if and only if $\eta([X, Y])=0$ for all $X, Y \in \Gamma(S(T M))$, i.e., $S(T M)$ is integrable [4].
Note 2. For a screen conformal M, since C is symmetric on $S(T M)$, the screen distribution $S(T M)$ is integrable. Thus M is locally a product manifold $L \times M^{*}$ where L is a null curve and M^{*} is a leaf of $S(T M)$ [5].

Example 2. Consider a surface M in R_{2}^{5} given by the equation

$$
x_{4}=\sqrt{x_{1}^{2}+x_{2}^{2}}, \quad x_{5}=\sqrt{1-x_{3}^{2}} .
$$

Then we have $T M=\operatorname{Span}\{\xi, U, V\}$ and $T M^{\perp}=\operatorname{Span}\{\xi, u\}$, where

$$
\begin{array}{ll}
U=x_{4} \partial_{1}+x_{1} \partial_{4}, & V=x_{5} \partial_{3}-x_{3} \partial_{5} \\
\xi=x_{1} \partial_{1}+x_{2} \partial_{2}+x_{4} \partial_{4}, & u=x_{3} \partial_{3}+x_{5} \partial_{5} .
\end{array}
$$

By direct calculations we check that $\operatorname{Rad}(T M)$ is a distribution on M of rank 1 spanned by ξ. Hence M is a half-lightlike submanifold of R_{2}^{5} such that $S(T M)=\operatorname{Span}\{U, V\}$ and $S\left(T M^{\perp}\right)=\operatorname{Span}\{u\}$. Then the lightlike transversal bundle $\operatorname{ltr}(T M)$ of the screen $S(T M)$ is given by

$$
\operatorname{ltr}(T M)=\operatorname{Span}\left\{N=\frac{1}{2 x_{2}^{2}}\left(x_{1} \partial_{1}-x_{2} \partial_{2}+x_{4} \partial_{4}\right)\right\}
$$

and the transversal bundle $\operatorname{tr}(T M)$ is given by $\operatorname{tr}(T M)=\operatorname{Span}\{N, u\}$.

Denote by $\bar{\nabla}$ the Levi-Civita connection on R_{2}^{5}. By straightforward calculations, we obtain

$$
\begin{aligned}
& \bar{\nabla}_{U} U=\xi+2 x_{2}^{2} N, \quad \bar{\nabla}_{U} V=0, \quad \bar{\nabla}_{U} \xi=2 U+\frac{x_{1} x_{4}}{2 x_{2}^{2}} \xi-x_{1} x_{4} N, \\
& \bar{\nabla}_{U} N=\frac{1}{2 x_{2}^{2}} U-2 \frac{x_{1} x_{4}}{x_{2}^{2}} N+\frac{x_{1} x_{4}}{x_{2}^{2}} \xi, \quad \bar{\nabla}_{U} u=0, \\
& \bar{\nabla}_{V} U=0, \quad \bar{\nabla}_{V} V=-2 u, \quad \bar{\nabla}_{V} \xi=0, \quad \bar{\nabla}_{V} N=0, \quad \bar{\nabla}_{V} u=2 V, \\
& \bar{\nabla}_{\xi} U=U+\frac{x_{4}}{2 x_{1}} \xi+\frac{x_{2}^{2} x_{4}}{x_{1}} N, \quad \bar{\nabla}_{\xi} \xi=\frac{x_{4}}{x_{1}} U+\left(\frac{3}{2}+\frac{x_{1}^{2}}{2 x_{2}^{2}}\right) \xi-x_{4}^{2} N, \\
& \bar{\nabla}_{\xi} V=0, \quad \bar{\nabla}_{\xi} N=-N, \quad \bar{\nabla}_{\xi} u=0 .
\end{aligned}
$$

Then taking into account of Gauss and Weingarten formulas infer

$$
\begin{gathered}
A_{\xi}^{*} U=-U, \quad A_{\xi}^{*} V=0, \quad A_{N} U=-\frac{1}{2 x_{4}^{2}} U, \quad A_{N} V=0, \quad A_{N} \xi=0 \\
\tau(U)=\tau(V)=\tau(\xi)=0, \quad \rho(U)=\rho(V)=\rho(\xi)=0
\end{gathered}
$$

Thus $A_{N} X=\left(1 / 2 x_{4}^{2}\right) A_{\xi}^{*} X$ for any $X \in \Gamma(T M)$ and M is a screen conformal half-lightlike submanifold of R_{2}^{5} with a conformal factor $\varphi=1 / 2 x_{2}^{2}$.
Definition. A vector field X on \bar{M} is said to be a conformal Killing [15] if $\overline{\mathcal{L}}_{X} \bar{g}=-2 \delta \bar{g}$, where δ is a non-vanishing smooth function on \bar{M} and $\overline{\mathcal{L}}_{X}$ denotes the Lie derivative with respect to X. In particular, if $\delta=0$, then X is called a Killing. A distribution \mathcal{G} on \bar{M} is said to be a conformal Killing (Killing) if each vector field belonging to \mathcal{G} is a conformal Killing (Killing).

Theorem 2.1. Let $(M, g, S(T M))$ be a half lightlike submanifold of a semiRiemannian manifold (\bar{M}, \bar{g}). Then the coscreen distribution is a conformal Killing if and only if $D(X, Y)=\epsilon \delta g(X, Y)$ for any $X, Y \in \Gamma(T M)$.
Proof. By straightforward calculations and use (1.6) and (1.15), we have

$$
\begin{gathered}
\left(\overline{\mathcal{L}}_{u} \bar{g}\right)(X, Y)=\bar{g}\left(\bar{\nabla}_{X} u, Y\right)+\bar{g}\left(X, \bar{\nabla}_{Y} u\right), \\
\bar{g}\left(\bar{\nabla}_{X} u, Y\right)=-g\left(A_{u} X, Y\right)+\phi(X) \eta(Y)=-\epsilon D(X, Y)
\end{gathered}
$$

for any $X, Y \in \Gamma(T M)$. Therefore, we obtain $\left(\overline{\mathcal{L}}_{u} \bar{g}\right)(X, Y)=-2 \epsilon D(X, Y)$.
Let $(M, g, S(T M))$ be a screen conformal half lightlike submanifold of a semi-Riemannian space form $(\bar{M}(c), \bar{g})$ with a conformal Killing coscreen. For all $X, Y, Z, W \in \Gamma(T M)$, by (1.9), (1.14) and (1.15), we have

$$
\begin{equation*}
D(X, Y)=\epsilon \delta g(X, Y), \quad \phi(X)=0, \quad A_{u} X=\delta P X+\epsilon \rho(X) \xi \tag{2.2}
\end{equation*}
$$

Using (2.1) and (2.2), the Gauss equations (1.17) and (1.22) reduce to

$$
\begin{align*}
& g(R(X, Y) Z, P W) \tag{2.3}\\
= & \left(c+\epsilon \delta^{2}\right)\{g(Y, Z) g(X, P W)-g(X, Z) g(Y, P W)\} \\
& +\varphi\{B(Y, Z) B(X, P W)-B(X, Z) B(Y, P W)\},
\end{align*}
$$

$$
\begin{align*}
& g\left(R^{*}(X, Y) P Z, P W\right) \tag{2.4}\\
= & \left(c+\epsilon \delta^{2}\right)\{g(Y, P Z) g(X, P W)-g(X, P Z) g(Y, P W)\} \\
& +2 \varphi\{B(Y, P Z) B(X, P W)-B(X, P Z) B(Y, P W)\}
\end{align*}
$$

respectively. From (1.18) with $\phi=0$ and (1.21), we have

$$
\begin{align*}
& \left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)=B(X, Z) \tau(Y)-B(Y, Z) \tau(X), \tag{2.5}\\
& \left(\nabla_{X} D\right)(Y, Z)-\left(\nabla_{Y} D\right)(X, Z)=B(X, Z) \rho(Y)-B(Y, Z) \rho(X) .
\end{align*}
$$

Differentiating the first equation of (2.2) and using (2.6), we have

$$
\begin{align*}
& \{\delta \eta(X)-\epsilon \rho(X)\} B(Y, Z)-\{\delta \eta(Y)-\epsilon \rho(Y)\} B(X, Z) \tag{2.7}\\
= & X[\delta] g(Y, Z)-Y[\delta] g(X, Z) .
\end{align*}
$$

Replacing Y by ξ in the last equation and using (1.9), we obtain

$$
\begin{equation*}
\{\delta-\epsilon \rho(\xi)\} B(X, Z)=\xi[\delta] g(X, Z) \tag{2.8}
\end{equation*}
$$

Using (1.19), (1.23), (2.1) and (2.5), we obtain

$$
\begin{align*}
& \{X[\varphi]-2 \varphi \tau(X)\} B(Y, P Z)-\{Y[\varphi]-2 \varphi \tau(Y)\} B(X, P Z) \tag{2.9}\\
= & \{c \eta(X)+\delta \rho(X)\} g(Y, P Z)-\{c \eta(Y)+\delta \rho(Y)\} g(X, P Z) .
\end{align*}
$$

Replacing Y by ξ in the last equation and using (1.9), we obtain

$$
\begin{equation*}
\{\xi[\varphi]-2 \varphi \tau(\xi)\} B(X, P Z)=(c+\delta \rho(\xi)) g(X, P Z) \tag{2.10}
\end{equation*}
$$

Theorem 2.2. Let $(M, g, S(T M))$ be a screen conformal half lightlike submanifold of a semi-Riemannian space form $\left(\bar{M}^{m+3}(c), \bar{g}\right), m>2$, with a conformal Killing coscreen distribution. Then we have $c+\delta \rho(\xi)=0$.

Proof. Assume that $c+\delta \rho(\xi) \neq 0$. Then we have $\xi[\varphi]-2 \varphi \tau(\xi) \neq 0$ and $B \neq 0$ by virtue of (2.10). Thus, from (1.9), (2.1) and (2.10), we have
(2.11) $B(X, Y)=\sigma g(X, Y), C(X, P Y)=\varphi \sigma g(X, Y), \forall X, Y \in \Gamma(T M)$,
where $\sigma=(c+\delta \rho(\xi))(\xi[\varphi]-2 \varphi \tau(\xi))^{-1} \neq 0$. From the first equation of (2.2) and (2.11), M is totally umbilical in \bar{M} and $S(T M)$ is also totally umbilical in M and \bar{M}. As \bar{M} has a constant curvature c, from (2.4) and (2.11), we have

$$
R^{*}(X, Y) Z=\left(c+2 \varphi \sigma^{2}+\epsilon \delta^{2}\right)\{g(Y, Z) X-g(X, Z) Y\}
$$

for all $X, Y, Z \in \Gamma(S(T M))$. Let M^{*} be the leaf of $S(T M)$ and Ric* be the Ricci tensor of M^{*}. Then, from the last equation, we have

$$
\operatorname{Ric}^{*}(X, Y)=\left(c+2 \varphi \sigma^{2}+\epsilon \delta^{2}\right)(m-1) g(X, Y), \quad \forall X, Y \in \Gamma(S(T M))
$$

Thus M^{*} is Einstein. As $m>2,\left(c+2 \varphi \sigma^{2}+\epsilon \delta^{2}\right)$ is a constant and M^{*} is a space of constant curvature $\left(c+2 \varphi \sigma^{2}+\epsilon \delta^{2}\right)$. Differentiating the first equation of (2.11) and using (1.10) and (2.5), we have

$$
\left\{X[\sigma]+\sigma \tau(X)-\sigma^{2} \eta(X)\right\} g(Y, Z)=\left\{Y[\sigma]+\sigma \tau(Y)-\sigma^{2} \eta(Y)\right\} g(X, Z)
$$

for all $X, Y, Z \in \Gamma(T M)$. Replacing Y by ξ in this equation, we have $\xi[\sigma]=$ $\sigma^{2}-\sigma \tau(\xi)$. From (2.8) and (2.11), we have $\xi[\delta]=\sigma \delta-\epsilon \sigma \rho(\xi)$. Since $\left(c+2 \varphi \sigma^{2}+\right.$
$\left.\epsilon \delta^{2}\right)$ is a constant, we have $\xi\left[c+2 \varphi \sigma^{2}+\epsilon \delta^{2}\right]=2 \sigma\left(c+2 \varphi \sigma^{2}+\epsilon \delta^{2}\right)=0$. Therefore, as $\sigma \neq 0$, we have $c+2 \varphi \sigma^{2}+\epsilon \delta^{2}=0$ and consequently we get $R^{*}=0$. Thus M^{*} is a semi-Euclidean space. As the second fundamental form of the totally umbilical semi-Euclidean space M^{*} as a submanifold of the semi-Riemannian space form $\bar{M}(c)$ vanishes $[3$, Section 2.3], we get $C=0$. Consequently, from (2.1), we get $B=0$ and $c+\delta \rho(\xi)=0$ due to (2.10). It is a contradiction to $c+\delta \rho(\xi) \neq 0$. Thus we have $c+\delta \rho(\xi)=0$.

Corollary 2.3 ([10]). Let $(M, g, S(T M))$ be a screen conformal half lightlike submanifold of a semi-Riemannian space form $\left(\bar{M}^{m+3}(c), \bar{g}\right), m>2$, with a Killing coscreen distribution. Then we have $c=0$ and $\delta=0$.

Theorem 2.4. Let $(M, g, S(T M))$ be a screen conformal Einstein half lightlike submanifold of a semi-Riemannian space form $\left(\bar{M}^{m+3}(c), \bar{g}\right), m>2$, with a conformal Killing coscreen distribution of conformal factor δ. Then the leaf M^{*} of $S(T M)$ is an Einstein manifold and δ is a constant.
Proof. From (2.3) and (2.4), we show that

$$
\begin{align*}
& 2 g(R(X, Y) P Z, P W) \tag{2.12}\\
= & g\left(R^{*}(X, Y) P Z, P W\right)+\left(c+\epsilon \delta^{2}\right)\{g(Y, P Z) g(X, P W)-g(X, P Z) g(Y, P W)\}
\end{align*}
$$

for all $X, Y, Z, W \in \Gamma(T M)$. Using the equations (1.27), (2.12) and the fact that $\bar{g}(R(\xi, X) Y, N)=(c+\delta \rho(\xi)) g(X, Y)=0$, we get

$$
2 R^{(0,2)}(X, Y)=\operatorname{Ric}^{*}(X, Y)+(m-1)\left(c+\epsilon \delta^{2}\right) g(X, Y)
$$

This shows that the induced tensor $R^{(0,2)}$ on M is symmetric. Thus M admits a symmetric Ricci tensor and $R^{(0,2)}=$ Ric. Since M is Einstein, i.e., Ric $=\gamma g$, where γ is a constant if $m>2$, the last equation reduces to

$$
\begin{equation*}
\operatorname{Ric}^{*}(X, Y)=\left\{2 \gamma-(m-1)\left(c+\epsilon \delta^{2}\right)\right\} g(X, Y), \forall X, Y \in \Gamma(T M) \tag{2.13}
\end{equation*}
$$

Thus M^{*} is also Einstein. Since $m>2$, the function $\left\{2 \gamma-(m-1)\left(c+\epsilon \delta^{2}\right)\right\}$ is a constant. Therefore, the conformal factor δ is a constant.

Theorem 2.5. Let ($M, g, S(T M)$) be a screen conformal Einstein half lightlike submanifold of a semi-Riemannian space form $\left(\bar{M}^{m+3}(c), \bar{g}\right), m>2$, with a conformal Killing coscreen distribution of conformal factor δ. If either $\gamma \neq$ $(m-1)\left(c+\epsilon \delta^{2}\right)$ or rank $A_{\xi}^{*}>0$, then we have $c+\epsilon \delta^{2}=0$.

Proof. Since M is Einstein, the conformal factor δ is a constant by Theorem 2.4. From (2.8) with $c+\delta \rho(\xi)=0$, we get $\left\{c+\epsilon \delta^{2}\right\} B(Y, Z)=0$, or equivalently, $\left\{c+\epsilon \delta^{2}\right\} A_{\xi}^{*} X=0$ for any $X, Y \in \Gamma(T M)$. First, if rank $A_{\xi}^{*}>0$, we get $c+\epsilon \delta^{2}=0$. Next, if $c+\epsilon \delta^{2} \neq 0$, then, since $\left(c+\epsilon \delta^{2}\right)$ is a constant, we have $B(X, Y)=0$ for any $X, Y \in \Gamma(T M)$. Thus, from (1.27), (2.3) and the fact that $\bar{g}(R(\xi, X) Y, N)=(c+\delta \rho(\xi)) g(X, Y)=0$, we have $\gamma=(m-1)\left(c+\epsilon \delta^{2}\right)$. This implies that if $\gamma \neq(m-1)\left(c+\epsilon \delta^{2}\right)$, then we get $c+\epsilon \delta^{2}=0$.

Recall the following notion of null sectional curvature $[2,5,6,8]$. Let $x \in M$ and ξ be a null vector of $T_{x} M$. A plane H of $T_{x} M$ is called a null plane directed by ξ if it contains $\xi, g_{x}(\xi, W)=0$ for any $W \in H$ and there exists $W_{o} \in H$ such that $g_{x}\left(W_{o}, W_{o}\right) \neq 0$. Then, the null sectional curvature of H, with respect to ξ and ∇, is defined as a real number

$$
K_{\xi}(H)=\frac{g_{x}(R(\xi, W) W, \xi)}{g_{x}(W, W)}
$$

where $W \neq 0$ is any vector in H independent with ξ. It is easy to see that $K_{\xi}(H)$ is independent of W but depends in a quadratic fashion on ξ. An $n(\geq 3)$-dimensional Lorentzian manifold is of constant curvature if and only if its null sectional curvatures are everywhere zero [12].

Theorem 2.6. Let ($M, g, S(T M)$) be a screen conformal half lightlike submanifold of a semi-Riemannian space form $\left(\bar{M}^{m+3}(c), \bar{g}\right), m>2$, with a conformal Killing coscreen distribution. Then every null plane H of $T_{x} M$ directed by ξ has everywhere zero null sectional curvatures.

Proof. From (1.9), (1.19) and (2.3), we show that $g(R(\xi, X) Y, P W)=0$ and $g(R(\xi, X) Y, N)=(c+\delta \rho(\xi)) g(X, Y)=0$ for any $X, Y \in \Gamma(T M)$. Thus the curvature tensor R of M satisfies $R(\xi, X) Y=0$ for any $X, Y \in \Gamma(T M)$. Thus $K_{\xi}(H)=\frac{g_{x}(R(\xi, W) W, \xi)}{g_{x}(W, W)}=0$ for any null plane H of $T_{x} M$ directed by ξ.

3. Einstein submanifolds

In this section, let $(M, g, S(T M))$ be a screen conformal half lightlike submanifold of a Lorentzian space form $(\bar{M}(c), \bar{g})$ with a conformal Killing coscreen distribution. Then $\epsilon=1, \phi=0$ and $S(T M)$ is a Riemannian and integrable vector bundle. As \bar{M} is a Lorentzian space form, then $\bar{R}(\xi, Y) X=c \bar{g}(X, Y) \xi$, $\bar{R}(u, X) Y=c \bar{g}(X, Y) u$ and $\overline{\operatorname{Ric}}(X, Y)=(m+2) c \bar{g}(X, Y)$. Thus the equation (1.28) reduces to

$$
\begin{align*}
\operatorname{Ric}(X, Y)= & m c g(X, Y)+B(X, Y) \operatorname{tr} A_{N}+D(X, Y) \operatorname{tr} A_{u} \tag{3.1}\\
& -\varphi g\left(A_{\xi}^{*} X, A_{\xi}^{*} Y\right)-g\left(A_{u} X, A_{u} Y\right), \quad \forall X, Y \in \Gamma(T M)
\end{align*}
$$

From (1.16), ξ is an eigenvector field of A_{ξ}^{*} corresponding to the eigenvalue 0 . Since A_{ξ}^{*} is $\Gamma(S(T M))$-valued real self-adjoint operator on $\Gamma(T M)$ with respect to g, A_{ξ}^{*} have m real orthonormal eigenvector fields in $S(T M)$ and is diagonalizable. Consider a frame field of eigenvectors $\left\{\xi, E_{1}, \ldots, E_{m}\right\}$ of A_{ξ}^{*} such that $\left\{E_{1}, \ldots, E_{m}\right\}$ is an orthonormal frame field of $S(T M)$. Then

$$
A_{\xi}^{*} E_{i}=\lambda_{i} E_{i}, \quad 1 \leq i \leq m
$$

Let M be an Einstein manifold. Then Ric $=\gamma g$ and (3.1) reduces to

$$
\begin{equation*}
g\left(A_{\xi}^{*} X, A_{\xi}^{*} Y\right)-\operatorname{sg}\left(A_{\xi}^{*} X, Y\right)+F g(X, Y)=0 \tag{3.2}
\end{equation*}
$$

where $s=\operatorname{tr} A_{\xi}^{*}$ is the trace of A_{ξ}^{*} and $F=\varphi^{-1}\left\{\gamma-m c-\delta \rho(\xi)+(1-m) \delta^{2}\right\}$ is a smooth function. In case $m>2$, we show that $F=\varphi^{-1}\left\{\gamma-(m-1)\left(c+\delta^{2}\right)\right\}$. Put $X=Y=E_{i}$ in (3.2), the eigenvalue λ_{i} is a solution of

$$
\begin{equation*}
x^{2}-s x+F=0 \tag{3.3}
\end{equation*}
$$

The equation (3.3) has at most two distinct solutions. Assume that there exists $p \in\{0,1, \ldots, m\}$ such that $\lambda_{1}=\cdots=\lambda_{p}=\alpha$ and $\lambda_{p+1}=\cdots=\lambda_{m}=\beta$, by renumbering if necessary. From (3.3), we have

$$
\begin{equation*}
s=\alpha+\beta=p \alpha+(m-p) \beta, \quad \alpha \beta=F . \tag{3.4}
\end{equation*}
$$

Although $S(T M)$ is not unique, it is canonically isomorphic to the factor vector bundle $S(T M)^{\sharp}=T M / \operatorname{Rad} T M$ considered by Kupeli [11]. Thus all $S(T M)$ are isomorphic. For this reason, in the sequel, let $(M, g, S(T M))$ be a screen conformal Einstein half lightlike submanifold equipped with the canonical null pair $\{\xi, N\}$ of a Lorentzian space form $\left(\bar{M}^{m+3}(c), \bar{g}\right), m>2$, with a conformal Killing coscreen distribution.

Theorem 3.1. Let ($M, g, S(T M)$) be a screen conformal Einstein half lightlike submanifold of a Lorentzian space form $\left(\bar{M}^{m+3}(c), \bar{g}\right), m>2$, with a conformal Killing coscreen distribution. Then M is locally a product manifold $L \times M_{\alpha} \times$ M_{β}, where L is a null curve and M_{α} and M_{β} are totally umbilical leaves of some distributions of M.

Proof. If (3.3) has only one solution α, then, since M is screen conformal, $M=L \times M^{*} \cong L \times M^{*} \times\{x\}$ for any $x \in \bar{M}$, where $M_{\alpha}=M^{*}$ is a leaf of $S(T M)$ and $M_{\beta}=\{x\}$ is a leaf of the trivial vector bundle $\{0\}$. Since $B(X, Y)=g\left(A_{\xi}^{*} X, Y\right)=\alpha g(X, Y)$ for all $X, Y \in \Gamma(T M)$, we get $C(X, Y)=$ $\varphi \alpha g(X, Y)$ for all $X, Y \in \Gamma(T M)$ by (2.1). Thus M^{*} is totally umbilical and $\{x\}$ is also totally umbilical. In this case, our assertion is true.

Assume that (3.3) has exactly two distinct solutions α and β. If $p=0$ or $p=m$, then we also show that $M=L \times M^{*} \cong L \times M^{*} \times\{x\}$ for any $x \in \bar{M}$, and $M^{*}=M_{\alpha}$ and $M_{\beta}=\{x\}$ (if $p=m$) or M_{β} and $M_{\alpha}=\{x\}$ (if $p=0$). In these cases, M^{*} is totally umbilical. If $0<p<m$. Consider the following four distributions $D_{\alpha}, D_{\beta}, D_{\alpha}^{s}$ and D_{β}^{s} on M :

$$
\begin{array}{ll}
\Gamma\left(D_{\alpha}\right)=\left\{X \in \Gamma(T M) \mid A_{\xi}^{*} X=\alpha P X\right\}, & D_{\alpha}^{s}=P D_{\alpha} \\
\Gamma\left(D_{\beta}\right)=\left\{U \in \Gamma(T M) \mid A_{\xi}^{*} U=\beta P U\right\}, & D_{\beta}^{s}=P D_{\beta}
\end{array}
$$

Then $D_{\alpha} \cap D_{\beta}=\operatorname{Rad}(T M)$ and $D_{\alpha}^{s} \cap D_{\beta}^{s}=\{0\}$.
Since $A_{\xi}^{*} P X=A_{\xi}^{*} X=\alpha P X$ for all $X \in \Gamma\left(D_{\alpha}\right)$ and $A_{\xi}^{*} P U=A_{\xi}^{*} U=\beta P U$ for all $U \in \Gamma\left(D_{\beta}\right), P X$ and $P U$ are eigenvector fields of the real symmetric operator A_{ξ}^{*} corresponding to the different eigenvalues α and β respectively. Thus $P X \perp_{q} P U$ and $g(X, U)=g(P X, P U)=0$, that is, $D_{\alpha} \perp_{g} D_{\beta}$. Also, since $B(X, U)=g\left(A_{\xi}^{*} X, U\right)=\alpha g(P X, P U)=0$, we show that $D_{\alpha} \perp_{B} D_{\beta}$.

For any $x \in M$, since $\left\{E_{i}\right\}_{1 \leq i \leq p}$ and $\left\{E_{a}\right\}_{p+1 \leq a \leq m}$ are p and $(m-p)$ smooth linearly independent vector fields of D_{α}^{s} and D_{β}^{s} respectively, D_{α}^{s} and D_{β}^{s} are smooth distributions. Also, as $\left\{\xi, E_{i}\right\}_{1 \leq i \leq p}$ and $\left\{\xi, E_{a}\right\}_{p+1 \leq a \leq m}$ are $(p+1)$ and $(m-p+1)$ smooth linearly independent vector fields of D_{α} and D_{β} respectively, D_{α} and D_{β} are also smooth distributions on M. Thus D_{α}^{s} and D_{β}^{s} are orthogonal vector subbundle of $S(T M), D_{\alpha}^{s}$ and D_{β}^{s} are non-degenerate distributions of rank p and rank $(m-p)$ respectively. Thus $S(T M)=D_{\alpha}^{s} \oplus_{\text {orth }}$ D_{β}^{s}. Consequently, $T M=\operatorname{Rad}(T M) \oplus_{\text {orth }} D_{\alpha}^{s} \oplus_{\text {orth }} D_{\beta}^{s}$.

From (3.2), we show that $\left(A_{\xi}^{*}\right)^{2}-(\alpha+\beta) A_{\xi}^{*}+\alpha \beta P=0$. Let $Y \in \operatorname{Im}\left(A_{\xi}^{*}-\right.$ $\alpha P)$, then there exists $X \in \Gamma(T M)$ such that $Y=\left(A_{\xi}^{*}-\alpha P\right) X$. Then $\left(A_{\xi}^{*}-\right.$ $\beta P) Y=0$ and $Y \in \Gamma\left(D_{\beta}\right)$. Thus $\operatorname{Im}\left(A_{\xi}^{*}-\alpha P\right) \subset \Gamma\left(D_{\beta}\right)$. Since the morphism $A_{\xi}^{*}-\alpha P$ maps $\Gamma(T M)$ onto $\Gamma\left(S(T M)\right.$), we have $\operatorname{Im}\left(A_{\xi}^{*}-\alpha P\right) \subset \Gamma\left(D_{\beta}^{s}\right)$. By duality, we also have $\operatorname{Im}\left(A_{\xi}^{*}-\beta P\right) \subset \Gamma\left(D_{\alpha}^{s}\right)$.

For $X, Y \in \Gamma\left(D_{\alpha}\right)$ and $U \in \Gamma\left(D_{\beta}\right)$, we have

$$
\left(\nabla_{X} B\right)(Y, U)=-g\left(\left(A_{\xi}^{*}-\alpha P\right) \nabla_{X} Y, U\right)+\alpha^{2} g(X, Y) \eta(U)
$$

and $\left(\nabla_{X} B\right)(Y, U)=\left(\nabla_{Y} B\right)(X, U)$ due to (2.5). Thus $g\left(\left(A_{\xi}^{*}-\alpha P\right)[X, Y], U\right)=$ 0 . As D_{β}^{s} is non-degenerate and $\operatorname{Im}\left(A_{\xi}^{*}-\alpha P\right) \subset \Gamma\left(D_{\beta}^{s}\right)$, we have $\left(A_{\xi}^{*}-\right.$ $\alpha P)[X, Y]=0$. Thus $[X, Y] \in \Gamma\left(D_{\alpha}\right)$ and D_{α} is integrable. By duality, D_{β} is also integrable. Since $S(T M)$ is integrable, for any $X, Y \in \Gamma\left(D_{\alpha}^{s}\right)$, we have $[X, Y] \in \Gamma\left(D_{\alpha}\right)$ and $[X, Y] \in \Gamma(S(T M))$. Thus $[X, Y] \in \Gamma\left(D_{\alpha}^{s}\right)$ and D_{α}^{s} is integrable. So is D_{β}^{s}.

For $X, Y \in \Gamma\left(D_{\alpha}\right)$ and $Z \in \Gamma(T M)$, we show that

$$
\begin{aligned}
\left(\nabla_{X} B\right)(Y, Z)= & -g\left(\left(A_{\xi}^{*}-\alpha P\right) \nabla_{X} Y, Z\right)+\alpha^{2} g(X, Y) \eta(Z) \\
& +(X \alpha) g(Y, Z)+\alpha^{2} \eta(Y) g(X, Z)
\end{aligned}
$$

Using this equation and the facts that $\left(\nabla_{X} B\right)(Y, Z)=\left(\nabla_{Y} B\right)(X, Z)$ due to (2.5) and $\left(A_{\xi}^{*}-\alpha P\right)[X, Y]=0$ for any $X, Y \in \Gamma\left(D_{\alpha}\right)$, we have

$$
\left\{X \alpha-\alpha^{2} \eta(X)\right\} g(Y, Z)=\left\{Y \alpha-\alpha^{2} \eta(Y)\right\} g(X, Z), \forall X, Y \in \Gamma\left(D_{\alpha}\right)
$$

Therefore, for $X, Y \in \Gamma\left(D_{\alpha}^{s}\right)$ and $Z \in \Gamma(S(T M)$), we obtain $(X \alpha) g(Y, Z)=$ $(Y \alpha) g(X, Z)$. Since $S(T M)$ is non-degenerate, we have $d \alpha(X) Y=d \alpha(Y) X$. Suppose there exists a vector field $X_{o} \in \Gamma\left(D_{\alpha}^{s}\right)$ such that $d \alpha\left(X_{o}\right)_{x} \neq 0$ at each point $x \in M$, then $Y=f X_{o}$ for any $Y \in \Gamma\left(D_{\alpha}^{s}\right)$, where f is a smooth function. It follows that all vectors from the fiber $\left(D_{\alpha}^{s}\right)_{x}$ are colinear with $\left(X_{o}\right)_{x}$. It is a contradiction as $\operatorname{dim}\left(\left(D_{\alpha}^{s}\right)_{x}\right)=p>1$. Thus we have $\left.d \alpha\right|_{D_{\alpha}^{s}}=0$. By duality, we also have $\left.d \beta\right|_{D_{\beta}^{s}}=0$. Thus α is a constant along D_{α}^{s} and β is a constant along D_{β}^{s}. From the first equation of (3.4), we have $(p-1) \alpha=-(m-p-1) \beta$. Thus both α and β are constants along $S(T M)$.

Using (2.9) with $c+\delta \rho(\xi)=0$ and $\tau=0$, we have

$$
\begin{equation*}
(X \varphi) B(Y, Z)-(Y \varphi) B(X, Z)=\delta\{\rho(P X) g(Y, Z)-\rho(P Y) g(X, Z)\} \tag{3.5}
\end{equation*}
$$

for any $X, Y, Z \in \Gamma(T M)$. Take $X, Y, Z \in \Gamma\left(D_{\alpha}^{s}\right)$, then (3.5) reduces to

$$
\{\alpha(X \varphi)-\delta \rho(X)\} Y=\{\alpha(Y \varphi)-\delta \rho(Y)\} X
$$

Since $\operatorname{dim}\left(D_{\alpha}^{s}\right)_{x}>1$, we have $(X \varphi) \alpha=\delta \rho(X)$ for all $X \in \Gamma\left(D_{\alpha}^{s}\right)$. While, take $X \in \Gamma\left(D_{\beta}^{s}\right)$ and $Y, Z \in \Gamma\left(D_{\alpha}^{s}\right)$ in (3.5), we have $(X \varphi) \alpha=\delta \rho(X)$ for all $X \in \Gamma\left(D_{\beta}^{s}\right)$. Consequently, we obtain $(X \varphi) \alpha=\delta \rho(X)$ for all $X \in \Gamma(S(T M))$. By duality, we get $(X \varphi) \beta=\delta \rho(X)$ for all $X \in \Gamma(S(T M))$. Thus we have $(X \varphi) \alpha=(X \varphi) \beta$ for all $X \in \Gamma(S(T M))$. Since $\alpha \neq \beta$, we have $X \varphi=0$ for all $X \in \Gamma(S(T M))$, that is, φ is a constant along $S(T M)$. Take $X, Y \in \Gamma\left(D_{\alpha}^{s}\right)$ in (2.10), we have $\xi[\varphi] \alpha=0$. Also, take $X, Y \in \Gamma\left(D_{\beta}^{s}\right)$ in (2.10), we have $\xi[\varphi] \beta=0$. Since $(\alpha, \beta) \neq(0,0)$, we have $\xi[\varphi]=0$. Thus we have $X \varphi=0$ for all $X \in \Gamma(T M)$, i.e., φ is a constant on M.

For all $X \in \Gamma\left(D_{\alpha}^{s}\right)$ and $U \in \Gamma\left(D_{\beta}^{s}\right)$, since $\left(\nabla_{X} B\right)(U, Z)=\left(\nabla_{U} B\right)(X, Z)$,

$$
g\left(\left\{\left(A_{\xi}^{*}-\beta P\right) \nabla_{X} U-\left(A_{\xi}^{*}-\alpha P\right) \nabla_{U} X\right\}, Z\right)=0, \forall Z \in \Gamma(S(T M))
$$

As $S(T M)$ is non-degenerate, we get $\left(A_{\xi}^{*}-\beta P\right) \nabla_{X} U=\left(A_{\xi}^{*}-\alpha P\right) \nabla_{U} X$. Since the left term of the last equation is in $\Gamma\left(D_{\alpha}^{s}\right)$ and the right term is in $\Gamma\left(D_{\beta}^{s}\right)$ and $D_{\alpha}^{s} \cap D_{\beta}^{s}=\{0\}$, we have $\left(A_{\xi}^{*}-\beta P\right) \nabla_{X} U=0$ and $\left(A_{\xi}^{*}-\alpha P\right) \nabla_{U} X=0$. This imply that $\nabla_{X} U \in \Gamma\left(D_{\beta}\right)$ and $\nabla_{U} X \in \Gamma\left(D_{\alpha}\right)$. On the other hand, $\nabla_{X} U=\nabla_{X}^{*} U$ and $\nabla_{U} X=\nabla_{U}^{*} X$ due to $D_{\alpha} \perp_{B} D_{\beta}$, we have

$$
\begin{equation*}
\nabla_{X} U \in \Gamma\left(D_{\beta}^{s}\right), \quad \nabla_{U} X \in \Gamma\left(D_{\alpha}^{s}\right), \quad \forall X \in \Gamma\left(D_{\alpha}^{s}\right), U \in \Gamma\left(D_{\beta}^{s}\right) \tag{3.6}
\end{equation*}
$$

For $X, Y \in \Gamma\left(D_{\alpha}^{s}\right)$ and $U, V \in \Gamma\left(D_{\beta}^{s}\right)$, since $g(X, U)=0$, we have

$$
g\left(\nabla_{Y} X, U\right)+g\left(X, \nabla_{Y} U\right)=0, \quad g\left(\nabla_{V} U, X\right)+g\left(U, \nabla_{V} X\right)=0
$$

Using (3.6), we have $g\left(X, \nabla_{Y} U\right)=g\left(U, \nabla_{V} X\right)=0$. Thus we show that

$$
\begin{equation*}
g\left(\nabla_{Y} X, U\right)=0, \quad g\left(X, \nabla_{V} U\right)=0 \tag{3.7}
\end{equation*}
$$

Since the leaf M^{*} of $S(T M)$ is a semi-Riemannian manifold and $S(T M)=$ $D_{\alpha}^{s} \oplus_{\text {orth }} D_{\beta}^{s}$, where D_{α}^{s} and D_{β}^{s} are integrable and parallel distributions with respect to the induced connection ∇^{*} on M^{*} due to (3.7), by the decomposition theorem of de Rham [13], we have $M^{*}=M_{\alpha} \times M_{\beta}$, where M_{α} and M_{β} are some leaves of D_{α}^{s} and D_{β}^{s} respectively. Thus we have our theorem.

Theorem 3.2. Let $(M, g, S(T M))$ be a screen conformal half lightlike submanifold of a Lorentzian space form $\left(\bar{M}^{m+3}(c), \bar{g}\right), m>2$, with a conformal Killing coscreen distribution. If M is Einstein, i.e., Ric $=\gamma g$, then M is locally a product manifold $L \times M_{\alpha} \times M_{\beta}$, where L is a null curve and M_{α} and M_{β} are totally umbilical leaves of some distributions of M :
(1) If $\gamma \neq(m-1)\left(c+\delta^{2}\right)$, then either M_{α} or M_{β} is an m-dimensional Einstein Riemannian space form which is isometric to a sphere $(\gamma>0)$ or a hyperbolic space $(\gamma<0)$ and the other is a point on M.
(2) If $\gamma=(m-1)\left(c+\delta^{2}\right)$, then M_{α} is an $(m-1)$ or m-dimensional Einstein Riemannian space form which is isometric to a sphere $(\gamma>0)$ or a hyperbolic space $(\gamma<0)$ or a Euclidean space $(\gamma=0)$ and M_{β} is a spacelike curve or a point on M.

Proof. First, we prove that $\gamma=0$ and $\alpha \beta=0$ if $0<p<m$: If $0<p<m$, then, since $\operatorname{rank} A_{\xi}^{*}>0$, we have $c+\delta^{2}=0$ by Theorem 2.5. If $p=1$ or $p=m-1$, then, from the facts that $(p-1) \alpha+(m-p-1) \beta=0$ and $m>2$, we show that if $p=1$, then $\beta=0$ and if $p=m-1$, then $\alpha=0$. Thus $\gamma=\varphi \alpha \beta=0$. If $1<p<m-1$, then, from (3.7), we know that $\nabla_{U} U$ has no component of D_{α}. Since the projection morphism P maps $\Gamma\left(D_{\beta}\right)$ onto $\Gamma\left(D_{\beta}^{s}\right)$ and $S(T M)=D_{\alpha}^{s} \oplus_{\text {orth }} D_{\beta}^{s}$,

$$
\nabla_{U} U=P\left(\nabla_{U} U\right)+\eta\left(\nabla_{U} U\right) \xi, \quad P\left(\nabla_{U} U\right) \in \Gamma\left(D_{\beta}^{s}\right)
$$

It follows that

$$
\begin{aligned}
g\left(\nabla_{X} \nabla_{U} U, X\right) & =g\left(\nabla_{X} P\left(\nabla_{U} U\right), X\right)+\eta\left(\nabla_{U} U\right) g\left(\nabla_{X} \xi, X\right) \\
& =-\alpha \eta\left(\nabla_{U} U\right) g(X, X) .
\end{aligned}
$$

As $\eta\left(\nabla_{U} U\right)=-\bar{g}\left(U, \bar{\nabla}_{U} N\right)=g\left(U, A_{N} U\right)=\varphi g\left(U, A_{\xi}^{*} U\right)=\varphi \beta g(U, U)$, we get

$$
g(R(X, U) U, X)=-\varphi \alpha \beta g(X, X) g(U, U)
$$

While, from the Gauss equation (2.3), we have

$$
g(R(X, U) U, X)=\varphi \alpha \beta g(X, X) g(U, U)
$$

due to $c+\delta^{2}=0$. From the last two equations, we get $\gamma=\varphi \alpha \beta=0$.
(1) Let $\gamma \neq(m-1)\left(c+\delta^{2}\right)$: In this case, we have $c+\delta^{2}=0$. First, in case $s^{2} \neq 4 F$. The equation (3.3) has two non-vanishing distinct solutions α and β. If $0<p<m$, then $\gamma=0$. This implies that $\gamma=(m-1)\left(c+\delta^{2}\right)$. Therefore, we have $p=0$ or $p=m$. If $p=0$, then $M=L \times M^{*}=L \times\{x\} \times M^{*}$ and $B(X, Y)=g\left(A_{\xi}^{*} X, Y\right)=\beta g(X, Y)$ for any $X, Y \in \Gamma(T M)$. From this and (2.1), we show that $C(X, Y)=\varphi \beta g(X, Y)$ for all $X, Y \in \Gamma(T M)$. Thus M^{*} is totally umbilical. From (2.4) and (2.13), we have

$$
\begin{aligned}
& R^{*}(X, Y) Z=2 \varphi \beta^{2}\{g(Y, Z) X-g(X, Z) Y\} \\
& \operatorname{Ric}^{*}(X, Y)=2 \varphi \beta^{2}(m-1) g(X, Y), \forall X, Y, Z \in \Gamma(S(T M))
\end{aligned}
$$

Thus M^{*} is Einstein and $2 \varphi \beta^{2}$ is a constant due to $m>2$. By (2.13), we have $2 \gamma=2 \varphi \beta^{2}$. Therefore, M^{*} is an Einstein space of constant curvature 2γ. By duality, if $p=m$, then $M=L \times M^{*}=L \times M^{*} \times\{x\}$ and $B(X, Y)=\alpha g(X, Y)$ for any $X, Y \in \Gamma(T M)$. Thus M is totally umbilical and M^{*} is a totally umbilical Einstein space of constant curvature $2 \gamma=2 \varphi \alpha^{2}$. In case $s^{2}=4 F$. The equation (3.3) has only one non-vanishing solution, named by α and α is a unique eigenvalue of A_{ξ}^{*}. In this case, the first equation of (3.4) reduces to $2 \alpha=m \alpha$. This implies $m=2$. Thus this case is an impossible one.
(2) Let $\gamma=(m-1)\left(c+\delta^{2}\right)$: The equation (3.3) reduces to $x(x-s)=0$. In case $s \neq 0$. Let $\alpha=0$ and $\beta=s$. Then we have $s=\beta=(m-p) \beta$, i.e., $(m-p-1) \beta=0$. So $p=m-1$. Thus M_{α} is a totally geodesic $(m-1)-$ dimensional Riemannian manifold and M_{β} is a spacelike curve in M. In the sequel, let $X, Y, Z \in \Gamma\left(D_{\alpha}^{s}\right)$ and $U \in \Gamma\left(D_{\beta}^{s}\right)$. From (2.4), we have

$$
\begin{aligned}
& R^{*}(X, Y) Z=\left(c+\delta^{2}\right)\{g(Y, Z) X-g(X, Z) Y\} \\
& \operatorname{Ric}^{*}(X, Y)=\left(c+\delta^{2}\right)(m-1) g(X, Y)
\end{aligned}
$$

Thus $g\left(R^{*}(X, Y) Z, U\right)=0$. This implies $\pi_{\alpha} R^{*}(X, Y) Z=R^{*}(X, Y) Z$, where π_{α} is the projection morphism of $\Gamma(S(T M))$ on $\Gamma\left(D_{\alpha}^{s}\right)$ and $\pi_{\alpha} R^{*}$ is the curvature tensor of D_{α}^{s}. Thus M_{α} is an Einstein manifold of a constant curvature $\left(c+\delta^{2}\right)$. Therefore, M is locally a product $L \times M_{\alpha} \times M_{\beta}$, where M_{α} is an ($m-1$)-dimensional Einstein Riemannian space form of a constant curvature $\left(c+\delta^{2}\right)$ and M_{β} is a spacelike curve in \bar{M}. In case $s=0$, we get $\alpha=\beta=0$, $A_{\xi}^{*}=B=0$ and $D_{\alpha}^{s}=D_{\beta}^{s}=S(T M)$. Since M is screen conformal, we also have $C=A_{N}=0$. Thus M^{*} is totally geodesic. Using (2.4), we have

$$
R^{*}(X, Y) Z=\left(c+\delta^{2}\right)\{g(Y, Z) X-g(X, Z) Y\}
$$

for all $X, Y, Z \in \Gamma(S(T M))$. Thus M is locally a product $L \times M^{*} \times\{x\}$, where M^{*} is an m-dimensional Einstein Riemannian space form of a constant curvature $\left(c+\delta^{2}\right)$ and $\{x\}$ is a point. In these cases, since $\left(c+\delta^{2}\right)=\frac{\gamma}{m-1}$, we have $\operatorname{sgn}\left(c+\delta^{2}\right)=\operatorname{sgn} \gamma$. Thus M_{α} and M^{*} are isometric to spheres (if $\gamma>0$) or hyperbolic spaces (if $\gamma<0$) or Euclidean spaces (if $\gamma=0$).

Corollary 3.3. Let $(M, g, S(T M))$ be a screen conformal Einstein half lightlike submanifold of a Lorentzian space form $\left(\bar{M}^{m+3}(c), \bar{g}\right), m>2$, with a Killing coscreen distribution. Then M is locally a product manifold $L \times M_{\alpha} \times M_{\beta}$, where L is a null curve and M_{α} and M_{β} are totally umbilical leaves of some distributions of M :
(1) If $\gamma \neq 0$, either M_{α} or M_{β} is an m-dimensional Riemannian space form which is isometric to a sphere $(\gamma>0)$ or a hyperbolic space $(\gamma<0)$ and the other is a point in M.
(2) If $\gamma=0, M_{\alpha}$ is an $(m-1)$ or m-dimensional Euclidean space and M_{β} is a spacelike curve or a point in M.

Proof. (1) Let $\gamma \neq 0$: In case $s^{2} \neq 4 F$. If $0<p<m$, then $\gamma=0$. Thus $p=0$ or $p=m$. Either M_{α} or M_{β} is a totally umbilical Riemannian manifold M^{*} of constant curvature $2 \varphi \alpha^{2}$ or $2 \varphi \beta^{2}$ respectively due to $\delta=c=0$. Thus M is locally a product manifold $L \times M^{*} \times\{x\}$ or $L \times\{x\} \times M^{*}$, where M^{*} is an m-dimensional totally umbilical Riemannian manifold of constant curvature $2 \gamma=2 \varphi \beta^{2}$ or $2 \gamma=2 \varphi \alpha^{2}$ which is isometric to a sphere or a hyperbolic space according to the sign of γ and $\{x\}$ is a point. The case $s^{2}=4 F$ is not appear because $m>2$.
(2) Let $\gamma=0$: In case $s \neq 0$. Then $\alpha=0$ and $\beta=s$. Since $p=m-1, M_{\alpha}$ is an $(m-1)$-dimensional Riemannian manifold of curvature $c+\delta^{2}=0$ and M_{β} is a spacelike curve. Thus M is locally a product manifold $L \times M_{\alpha} \times M_{\beta}$, where M_{α} is an $(m-1)$-dimensional Euclidean space and M_{β} is a spacelike curve in M. In case $s=0$. Then $\alpha=\beta=0$ and $D_{\alpha}^{s}=D_{\beta}^{s}=S(T M)$. Thus M^{*} is an m-dimensional Riemannian manifold of curvature $c+\delta^{2}=0$. Thus M is locally a product $L \times M^{*} \times\{x\}$ where M^{*} is an m-dimensional Euclidean space, L is a null curve and $\{x\}$ is a point.

Example 3. Consider a surface M in R_{2}^{4} given by the equations

$$
x_{3}=\frac{1}{\sqrt{2}}\left(x_{1}+x_{2}\right), \quad x_{4}=\frac{1}{2} \ln \left(1+\left(x_{1}-x_{2}\right)^{2}\right) .
$$

Then $T M=\operatorname{Span}\{U, V\}$ and $T M^{\perp}=\operatorname{Span}\{\xi, u\}$, where we set

$$
\begin{aligned}
& U=\sqrt{2}\left(1+\left(x_{1}-x_{2}\right)^{2}\right) \partial_{1}+\left(1+\left(x_{1}-x_{2}\right)^{2}\right) \partial_{3}+\sqrt{2}\left(x_{1}-x_{2}\right) \partial_{4}, \\
& V=\sqrt{2}\left(1+\left(x_{1}-x_{2}\right)^{2}\right) \partial_{2}+\left(1+\left(x_{1}-x_{2}\right)^{2}\right) \partial_{3}-\sqrt{2}\left(x_{1}-x_{2}\right) \partial_{4}, \\
& \xi=\partial_{1}+\partial_{2}+\sqrt{2} \partial_{3}, \\
& u=2\left(x_{2}-x_{1}\right) \partial_{2}+\sqrt{2}\left(x_{2}-x_{1}\right) \partial_{3}+\left(1+\left(x_{1}-x_{2}\right)\right) \partial_{4} .
\end{aligned}
$$

By direct calculations we check that $\operatorname{Rad}(T M)$ is a distribution on M of rank 1 spanned by ξ. Hence M is a half-lightlike submanifold of R_{2}^{4}. Choose $S(T M)$ and $S\left(T M^{\perp}\right)$ spanned by V and u which are timelike and spacelike respectively. We obtain the lightlike transversal vector bundle

$$
\operatorname{ltr}(T M)=\operatorname{Span}\left\{N=-\frac{1}{2} \partial_{1}+\frac{1}{2} \partial_{2}+\frac{1}{\sqrt{2}} \partial_{3}\right\}
$$

and the transversal bundle $\operatorname{tr}(T M)=\operatorname{Span}\{N, u\}$. Denote by $\bar{\nabla}$ the LeviCivita connection on R_{2}^{4} and by straightforward calculations we obtain

$$
\begin{aligned}
& \bar{\nabla}_{V} V=2\left(1+\left(x_{1}-x_{2}\right)^{2}\right)\left\{2\left(x_{2}-x_{1}\right) \partial_{2}+\sqrt{2}\left(x_{2}-x_{1}\right) \partial_{3}+\partial_{4}\right\}, \\
& \bar{\nabla}_{\xi} V=0, \quad \bar{\nabla}_{X} \xi=\bar{\nabla}_{X} N=0, \quad \forall X \in \Gamma(T M) .
\end{aligned}
$$

Taking into account of Gauss and Weingarten formulae, we infer

$$
\begin{aligned}
& B=0, \quad A_{\xi}^{*}=0, \quad A_{N}=0, \quad \nabla_{X} \xi=0, \quad \tau(X)=\rho(X)=0 \\
& {\left[D(X, \xi)=0, \quad D(V, V)=2, \quad \nabla_{X} V=\frac{2 \sqrt{2}\left(x_{2}-x_{1}\right)^{3}}{1+\left(x_{1}-x_{2}\right)^{2}} X^{2} V\right.}
\end{aligned}
$$

for any $X=X^{1} \xi+X^{2} V$ tangent to M. As $A_{\xi}^{*} X=A_{N} X=0$ for any $X \in$ $\Gamma(T M), M$ is a trivial screen conformal half lightlike submanifold of R_{2}^{4}. Since $g(V, V)=-\left(1+\left(x_{1}-x_{2}\right)^{4}\right)$ we have

$$
D(V, V)=\delta g(V, V), \quad \text { where } \quad \delta=-\frac{2}{\left(1+\left(x_{1}-x_{2}\right)^{4}\right)}
$$

Therefore M is a screen conformal half lightlike submanifold of R_{2}^{4} with a conformal Killing coscreen distribution $S\left(T M^{\perp}\right)$. Thus M is locally a product manifold $M=L_{1} \times L_{2}$, where L_{1} is a null curve tangent to $\operatorname{Rad}(T M)$ and L_{2} is a timelike curve tangent to $S(T M)$.

References

[1] C. Atindogbe and K. L. Duggal, Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math. 11 (2004), no. 4, 421-442.
[2] J. K. Beem, P. E. Ehrlich, and K. L. Easley, Global Lorentzian Geometry, Marcel Dekker, Inc. New York, Second Edition, 1996.
[3] B. Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
[4] K. L. Duggal and A. Bejancu, Lightlike submanifolds of codimension two, Math. J. Toyama Univ. 15 (1992), 59-82.
[5] _, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
[6] K. L. Duggal and D. H. Jin, Half-lightlike submanifolds of codimension two, Math. J. Toyama Univ. 22 (1999), 121-161.
[7] A. Fialkow, Hypersurfaces of a space of constant curvature, Ann. of Math. (2) $\mathbf{3 9}$ (1938), no. 4, 762-785.
[8] S. G. Harris, A triangle comparison theorem for Lorentz manifolds, Indiana Univ. Math. J. 31 (1982), no. 3, 289-308.
[9] D. H. Jin, Einstein half lightlike submanifolds with a Killing co-screen distribution, Honam Math. J. 30 (2008), no. 3, 487-504.
[10] _, A characterization of screen conformal half lightlike submanifolds, Honam Math. J. 31 (2009), no. 1, 17-23.
[11] D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
[12] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.
[13] G. de Rham, Sur la réductibilité d'un espace de Riemannian, Comment. Math. Helv. 26 (1952), 328-344.
[14] T. Y. Thomas, On closed spaces of constant mean curvature, Amer. J. Math. 58 (1936), no. 4, 702-704.
[15] K. Yano, Differential Geometry on Complex and Almost Complex Spaces, The Macmillan Company, 1965.

Department of Mathematics
Dongguk University
Kyonguu 780-714, Korea
E-mail address: jindh@dongguk.ac.kr

