• Title/Summary/Keyword: Light resistance

Search Result 1,040, Processing Time 0.154 seconds

Alanine and serine functionalized magnetic nano-based particles for sorption of Nd(III) and Yb(III)

  • Galhoum, Ahmed A.;Mahfouz, Mohammad G.;Atia, Asem A.;Gomaa, Nabawia A.;Abdel-Rehem, Sayed T.;Vincent, Thierry;Guibal, Eric
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Magnetic nano-based sorbents have been synthesized for the recovery of two rare earth elements (REE: Nd(III) and Yb(III)). The magnetic nano-based particles are synthesized by a one-pot hydrothermal procedure involving co-precipitation under thermal conditions of Fe(III) and Fe(II) salts in the presence of chitosan. The composite magnetic/chitosan material is crosslinked with epichlorohydrin and modified by grafting alanine and serine amine-acids. These materials are tested for the binding of Nd(III) (light REE) and Yb(III) (heavy REE) through the study of pH effect, sorption isotherms, uptake kinetics, metal desorption and sorbent recycling. Sorption isotherms are well fitted by the Langmuir equation: the maximum sorption capacities range between 9 and 18 mg REE $g^{-1}$ (at pH 5). The sorption mechanism is endothermic (positive value of ${\Delta}H^{\circ}$) and contributes to increase the randomness of the system (positive value of ${\Delta}S^{\circ}$). The fast uptake kinetics can be described by the pseudo-second order rate equation: the equilibrium is reached within 4 hours of contact. The sub-micron size of sorbent particles strongly reduces the contribution of resistance to intraparticle diffusion in the control of uptake kinetics. Metal desorption using acidified thiourea solutions allows maintaining sorption efficiency for at least four successive cycles with limited loss in sorption capacity.

The Effect of electron beam surface irradiation on the properties of SnO2/Ag/SnO2 thin films (전자빔 표면 조사에 따른 SnO2/Ag/SnO2 박막의 특성 연구)

  • Jang, Jin-Kyu;Kim, Hyun-Jin;Choi, Jae-Wook;Lee, Yeon-Hak;Kong, Young-Min;Heo, Sung-Bo;Kim, Yu-Sung;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.302-306
    • /
    • 2021
  • SnO2 30/Ag 15/SnO2 30 nm(SAS) tri-layer films were deposited on the glass substrates with RF and DC magnetron sputtering and then electron beam is irradiated on the surface to investigate the effect of electron bombardment on the opto-electrical performance of the films. electron beam irradiated tri-layer films at 1000 eV show a higher figure of merit of 2.72×10-3 Ω-1 than the as deposited films due to a high visible light transmittance of 72.1% and a low sheet resistance of 14.0 Ω/☐, respectively. From the observed results, it is concluded that the post-deposition electron irradiated SnO2 30/Ag 15/SnO2 30 nm tri-layer films can be used as a substitute for conventional transparent conducting oxide films in various opto-electrical applications.

Manufacturing of artificial lightweight aggregate from water treatment sludge and application to Non-point treatment filteration (정수슬러지를 재활용한 인공경량골재의 제조 및 비점오염원 여재의 적용)

  • Jung, Sung-Un;Lee, Seoung-Ho;Namgung, Hyun-Min
    • Industry Promotion Research
    • /
    • v.6 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • The purpose of this study is to manufacture lightweight aggregates for recycling water treatment sludge, to identify the physical properties of the aggregates, and present a method of utilizing the manufactured lightweight aggregates. The chemical composition and thermal properties were examined via a raw materials analysis. The aggregate examined here was fired by the rapid sintering method and the single-particle density and water absorption rate were measured. Water treatment sludge has high ignition loss and high fire resistance. When 30wt% of purified sludge was added, the single-particle density of the aggregates was in the range of 0.8~1.2g/cm3 at a temperature of 1,150~1,200℃. At temperatures of 1200℃ or higher, ultra-light aggregates having a single-particle density of 0.8 or less could be produced. When applied to concrete by replacing the general aggregate in the concrete, a specimen having strength values of 200 to 450 kgf/cm2 on 28 days was obtained, and when applied as a filter material, the performance was equal to or higher than that of ordinary sand.

Transcriptomic analysis of the liver in aged laying hens with different intensity of brown eggshell color

  • Han, Gi Ppeum;Kim, Jun-Mo;Kang, Hwan Ku;Kil, Dong Yong
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.811-823
    • /
    • 2021
  • Objective: Eggshell color is an important indicator of egg quality for consumers, especially for brown eggs. Various factors related to laying hens and their environment affect brown eggshell coloration. However, there have been no studies investigating hepatic functions of laying hens with variable intensity of brown eggshell color. Therefore, this study was aimed to identify potential factors affecting brown eggshell coloration in aged laying hens at the hepatic transcriptomic level. Methods: Five hundred 92-wk-old Hy-line Brown laying hens were screened to select laying hens with different intensity of brown eggshell color based on eggshell color fans. Based on eggshell color scores, hens with dark brown eggshells (DBE; eggshell color fan score = 14.8) and hens with light brown eggshells (LBE; eggshell color fan score = 9.7) were finally selected for the liver sampling. We performed RNA-seq analysis using the liver samples through the paired-end sequencing libraries. Differentially expressed genes (DEGs) profiling was carried out to identify their biological meaning by bioinformatics. Results: A total of 290 DEGs were identified with 196 being up-regulated and 94 being down-regulated in DBE groups as compared to LBE groups. The Kyoto encyclopedia of genes and genomes (KEGG) analysis revealed that these DEGs belong to several biological pathways including herpes simplex infection (toll-like receptor 3 [TLR3], cyclin-dependent kinase 1, etc.) and influenza A (TLR3, radical S-adenosyl methionine domain containing 2, myxovirus [influenza virus] resistance 1, etc.). Genes related to stress response (ceremide kinase like) and nutrient metabolism (phosphoenolpyruvate carboxy-kinase 1, methylmalonic aciduria [cobalamin deficiency] cblB type, glycine receptor alpha 2, solute carrier family 7 member 11, etc.) were also identified to be differentially expressed. Conclusion: The current results provide new insights regarding hepatic molecular functions related to different intensity of brown eggshell color in aged laying hens. These insights will contribute to future studies aiming to optimize brown eggshell coloration in aged laying hens.

Stress-strain behaviour of reinforced dredged sediment and expanded polystyrenes mixture under cyclic loading

  • Zhou, Yundong;Li, Mingdong;Wen, Kejun;Tong, Ruiming
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.507-513
    • /
    • 2019
  • Reinforced soil and Expanded Polystyrenes (EPS) mixture (RSEM) is a geomaterial which has many merits, such as light weight, wide strength range, easy for construction, and economic feasibility. It has been widely applied to improve soft ground, solve bridge head jump, fill cavity in pipeline and widen highway. Reutilizing dredged sediment to produce RSEM as earthfill can not only consume a large amount of waste sediment but also significantly reduce the construction cost. Therefore, there is an urgent need understand the basic stress-strain characteristics of reinforced dredged sediment-EPS mixture (RDSEM). A series of cyclic triaxial tests were then carried out on the RDSEM and control clay. The effects of cement content, EPS beads content and confining pressure on the cyclic stress-strain behaviour of RDSEM were analyzed. It is found that the three stages of dynamic stress-strain relationship of ordinary soil, vibration compaction stage, vibration shear stage and vibration failure stage are also applicative for RDSEM. The cyclic stress-strain curves of RDSEM are lower than that of control clay in the vibration compaction stage because of its high moisture content. The slopes of backbone curves of RDSEMs in the vibration shear stage are larger than that of control clay, indicating that the existence of EPS beads provides plastic resistance. With the increase of cement content, the cyclic stress-strain relationship tends to be steeper. Increasing cement content and confining pressure could improve the cyclic strength and cyclic stiffness of RDSEM.

Investigation on Size Distribution of Tungsten-based Alloy Particles with Solvent Viscosity During Ultrasonic Ball Milling Process (초음파 볼밀링 공정에 의한 용매 점도 특성에 따른 텅스텐계 합금 분쇄 거동)

  • Ryu, KeunHyuk;So, HyeongSub;Yun, JiSeok;Kim, InHo;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.201-207
    • /
    • 2019
  • Tungsten heavy alloys (W-Ni-Fe) play an important role in various industries because of their excellent mechanical properties, such as the excellent hardness of tungsten, low thermal expansion, corrosion resistance of nickel, and ductility of iron. In tungsten heavy alloys, tungsten nanoparticles allow the relatively low-temperature molding of high-melting-point tungsten and can improve densification. In this study, to improve the densification of tungsten heavy alloy, nanoparticles are manufactured by ultrasonic milling of metal oxide. The physical properties of the metal oxide and the solvent viscosity are selected as the main parameters. When the density is low and the Mohs hardness is high, the particle size distribution is relatively high. When the density is high and the Mohs hardness is low, the particle size distribution is relatively low. Additionally, the average particle size tends to decrease with increasing viscosity. Metal oxides prepared by ultrasonic milling in high-viscosity solvent show an average particle size of less than 300 nm based on the dynamic light scattering and scanning electron microscopy analysis. The effects of the physical properties of the metal oxide and the solvent viscosity on the pulverization are analyzed experimentally.

Photoprotective Effects of Soybean Extract against UV-Induced Damage in Human Fibroblast and Hairless Mouse Model

  • Cho, Young-Chang;Han, Jae-Bok;Park, Sang-Ik
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.20-29
    • /
    • 2019
  • Soy isoflavones have been reported to possess many physiological activities such as antioxidant activity and inhibition of cancer cell proliferation. This study investigated the photoprotective effects of soybean extract in human fibroblast cell line and hairless mice model. Human fibroblast was treated with soybean extract before and after ultraviolet B (UVB; 290-302 nm) irradiation. In the soybean extract treated group, the cells showed better resistance to ultraviolet (UV) than control group. The amount of type I collagen recovered from the soybean treated group was higher than the vehicle group exposed to UV-induced damage. Moreover, increased expression of metalloproteinases-1 as a result of UV irradiation was suppressed by the soybean extract. Female mice were orally administered soybean extract and irradiated with UVB light for 8 weeks. The effects of the soybean extract on the skin appearance, collagen deposition and epidermal thickness in the UV-damaged mouse skin were analyzed using histopathological methods. In soybean extract treated group, the skin had a better morphology than that of the control group. Furthermore, the amount of type I collagen was increased and overexpression of MMP-1 was reduced in the soybean extract group compared to vehicle group. Additionally, up-regulation of pro-inflammatory cytokines induced by UV irradiation was suppressed by dietary soybean extract treatment. It appears that soybean extract had a photoprotective effect, including anti-aging and anti-inflammatory effect, from UV-induced damage in not only human fibroblast, but also hairless mice. We confirmed that these effects were possibly due to promotion of collagen synthesis and inhibition of MMP-1 expression.

Simulation of Capillary Flow Along a Slot-die Head for Stripe Coatings (Stripe 코팅용 슬롯 다이 헤드 모세관 유동 전산모사)

  • Yoo, Su-Ho;Lee, Jin-Young;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.92-96
    • /
    • 2019
  • In the presence of ${\mu}-tip$ embedded in a slot-die head for stripe coatings, there arises the capillary flow that limits an increase of the stripe density, which is required for the potential applications in organic light-emitting diode displays. With an attempt to suppress it, we have employed a computational fluid dynamics software and performed simulations by varying the ${\mu}-tip$ length and the contact angles of the head lip and ${\mu}-tip$. We have first demonstrated that such a capillary flow phenomenon (a spread of solution along the head lip) observed experimentally can be reproduced by the computational fluid dynamics software. Through simulations, we have found that stronger capillary flow is observed in the hydrophilic head lip with a smaller contact angle and it is suppressed effectively as the contact angle increases. When the contact angle of the head lip increases from $16^{\circ}$ to $130^{\circ}$, the distance a solution can reach decreases sharply from $256{\mu}m$ to $44{\mu}m$. With increasing contact angle of the ${\mu}-tip$, however, the solution flow along the ${\mu}-tip$ is disturbed and thus the capillary flow phenomenon becomes more severe. If the ${\mu}-tip$ is long, the capillary flow also appears strong due to an increase of flow resistance (electronic-hydraulic analogy). It can be suppressed by reducing the ${\mu}-tip$ length, but not as effectively as reducing the contact angle of the head lip.

Development of New Stacked Element Piezoelectric Polyvinylidene Fluoride Pressure Sensor for Simultaneous Heartbeat and Respiration Measurements (PVDF 압전소자를 이용한 심장박동 및 호흡수 동시측정센서개발)

  • Park, Chang-Yong;Kweon, Hyun-Kyu;Lee, So-Jin;Manh, Long-Nguyen
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.100-108
    • /
    • 2019
  • In this paper, a new stacked element pressure sensor has proposed for heartbeat and respiration measurement. This device can be directly attached to an individual's chest; heartbeat and respiration are detected by the pulsatile vibration and deformation of the chest. A key feature of the device is the simultaneous measurement of heart rate and respiration. The structure of the sensor consists of two stacked elements, in which one element includes one polyvinylidene fluoride (PVDF) thin film bonded on polydimethylsiloxane (PDMS) substrate. In addition, for the measurement and signal processing, the electric circuit and the filter are simply constructed with an OP-amp, resistance, and a capacitor. One element (element1, PDMS) maximizes the respiration signal; the other (element2, PVDF) is used to measure heartbeat. Element1 and element2 had sensitivity of 0.163V/N and 0.209V/N, respectively, and element2 showed improved characteristics compared with element1 in response to force. Thus, element1 and element2 were optimized for measuring respiration heart rate, respectively. Through mechanical and vivo human tests, this sensor shows the great potential to optimize the signals of heartbeat and respiration compared with commercial devices. Moreover, the proposed sensor is flexible, light weight, and low cost. All of these characteristics illustrate an effective piezoelectric pressure sensor for heartbeat and respiration measurements.

Wear of 3D printed and CAD/CAM milled interim resin materials after chewing simulation

  • Myagmar, Gerelmaa;Lee, Jae-Hyun;Ahn, Jin-Soo;Yeo, In-Sung Luke;Yoon, Hyung-In;Han, Jung-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.3
    • /
    • pp.144-151
    • /
    • 2021
  • PURPOSE. The purpose of this in vitro study was to investigate the wear resistance and surface roughness of three interim resin materials, which were subjected to chewing simulation. MATERIALS AND METHODS. Three interim resin materials were evaluated: (1) three-dimensional (3D) printed (digital light processing type), (2) computer-aided design and computer-aided manufacturing (CAD/CAM) milled, and (3) conventional polymethyl methacrylate interim resin materials. A total of 48 substrate specimens were prepared. The specimens were divided into two subgroups and subjected to 30,000 or 60,000 cycles of chewing simulation (n = 8). The wear volume loss and surface roughness of the materials were compared. Statistical analysis was performed using one-way analysis of variance and Tukey's post-hoc test (α=.05). RESULTS. The mean ± standard deviation values of wear volume loss (in mm3) against the metal abrader after 60,000 cycles were 0.10 ± 0.01 for the 3D printed resin, 0.21 ± 0.02 for the milled resin, and 0.44 ± 0.01 for the conventional resin. Statistically significant differences among volume losses were found in the order of 3D printed, milled, and conventional interim materials (P<.001). After 60,000 cycles of simulated chewing, the mean surface roughness (Ra; ㎛) values for 3D printed, milled, and conventional materials were 0.59 ± 0.06, 1.27 ± 0.49, and 1.64 ± 0.44, respectively. A significant difference was found in the Ra value between 3D printed and conventional materials (P=.01). CONCLUSION. The interim restorative materials for additive and subtractive manufacturing digital technologies exhibited less wear volume loss than the conventional interim resin. The 3D printed interim restorative material showed a smoother surface than the conventional interim material after simulated chewing.