Browse > Article
http://dx.doi.org/10.21186/IPR.2021.6.4.001

Manufacturing of artificial lightweight aggregate from water treatment sludge and application to Non-point treatment filteration  

Jung, Sung-Un (Twolin)
Lee, Seoung-Ho (Twolin)
Namgung, Hyun-Min (Twolin)
Publication Information
Industry Promotion Research / v.6, no.4, 2021 , pp. 1-9 More about this Journal
Abstract
The purpose of this study is to manufacture lightweight aggregates for recycling water treatment sludge, to identify the physical properties of the aggregates, and present a method of utilizing the manufactured lightweight aggregates. The chemical composition and thermal properties were examined via a raw materials analysis. The aggregate examined here was fired by the rapid sintering method and the single-particle density and water absorption rate were measured. Water treatment sludge has high ignition loss and high fire resistance. When 30wt% of purified sludge was added, the single-particle density of the aggregates was in the range of 0.8~1.2g/cm3 at a temperature of 1,150~1,200℃. At temperatures of 1200℃ or higher, ultra-light aggregates having a single-particle density of 0.8 or less could be produced. When applied to concrete by replacing the general aggregate in the concrete, a specimen having strength values of 200 to 450 kgf/cm2 on 28 days was obtained, and when applied as a filter material, the performance was equal to or higher than that of ordinary sand.
Keywords
Water treatment sludge; Lightweight aggregate; Waste recycling; Construction materials; Nonpoint pollution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. M. Wie, K. G. Lee, K. H. Lee, "Chemical design of lightweight aggregate to prevent adhesion at bloating activation temperature" J. Asian Ceram. Soc. 8 245-254, (2020).   DOI
2 Y. M. Wie, K. G. Lee, "Composition design of the optimum bloating activation condition for artificial lightweight aggregate using coal ash" J. Kor. Ceram. Soc. 57 220-230, (2020).   DOI
3 Y. M. Wie and K. G. Lee, "Optimum bloating-activation zone of artificial lightweight aggregate by dynamic parameters," Materials (Basel)., 12, 2, (2019).   DOI
4 Korean Standards Association. "Fly ash" Seoul: South Korea KS L 5405, (2018).
5 Republic of Korea Ministry of Environment Notice 2016-196 "Waste Process Test Standard"
6 C. Molinari, C. Zanelli, G. Guarini, M. Dondi "Bloating mechanism in ligheweight aggregates: Effect of Processing variables and properties of the vitreous phase" Constr. Build. Mater. 261 119980, (2020).   DOI
7 M. Balapour, R. Rao, E. J. Garboczi, S. Spatari, Y. G. Hsuan, P. Billen, Y. Farnam "Thermochemical principles of the production of lightweight aggregates from waste coal bottom ash" J. Am. Ceram. Soc., 00, 17458, (2020).
8 K. H. Lee, J. H. Lee, Y. M. Wie, and K. G. Lee, "Bloating Mechanism of Lightweight Aggregates due to Ramping Rate," vol. 2019, Article ID2647391, (2019).
9 B. Ayati, V. Ferrandiz-Mas, D. Newport, and C. Cheeseman, "Use of clay in the manufacture of lightweight aggregate," Constr. Build. Mater., 162, 124-131, (2018).   DOI
10 Y. M. Wie, K. G. Lee "Evaporation and Stabilization of Heavy Metals with Colloid/Interface Properties in EAF Dust-Clay Bodies" Mater. Sci. Forum 544-545 569-572, (2007).   DOI
11 A. Jena, & K. Gupta, "Characterization of pore structure of filtration media." Fluid/Particle Separation Journal, 14(3), 227-241. (2002).
12 T. Ahmad, K. A. M. Alam, "Sustainable management of water treatment sludge through 3'R' concept" J. Clean. Prod. 124, 1-13, (2016).   DOI
13 K.B. Dassanayake, G.Y. Jayasinghe, A. Surapaneni, C. Hetherington, "A review on alum sludge reuse with special reference to agricultural applications and future challenges" Waste Manag., 38, 321-335, (2015).   DOI
14 G. Cougny, "Specifications sur les matieres premieres argileuses pour la fabrication de granulats legers expanses," Bull. Int. Assoc. Eng. Geol. - Bull. l'Association Int. Geologie l'Ingenieur, vol. 41, no. 1, pp. 47-55, (1990).   DOI
15 Y. M. Wie, K. G. Lee, K. H. Lee "Physicochemical effect of the aeration rate on bloating characterizations of artificial lightweight aggregate" Constr. Build. Mater. 256 119444, (2020).   DOI
16 R. H. Geraldo L. F. R. Fernandes, G. Camarini, "Water treatment sludge and rice husk ash to sustainable geopolymer production" J. Clean. Prod. 149 146-155, (2017).   DOI
17 Y. M. Wie, K. G. Lee "Correlation to the physical properties of green and sintered body of artificial lightweight aggregate with the pelletizing variables", J. Korean Ceram. Soc. 44 568-573, (2007).   DOI
18 A. O. Babatunde, Y. Q. Zhao, "Constructive approaches toward water treatment works sludge management: an international review of beneficial reuses" Crit. Rev. Environ. Sci. Technol. 37 129-164, (2007).   DOI
19 C.Martinez-Garcia, D.Eliche-Quesada, L.Perez-Villarejo, F.J.Iglesias-Godino, F.A.CorpasIglesias, ""J.Environ.Manage.,95S343-S348.
20 M.A. Sanchez-Monedero, C. Modini, M.D. Nobili, L. Leita, A. Roig, ""WasteManag.24325-332, (2004).
21 C. H. Huang, S. Y. Wang, "Application of water treatment sludge in the manufacturing of lightweight aggregate" Constr. Build. Mater. 43 174-183, (2013).   DOI
22 C. M. RILEY, "Relation of Chemical Properties to the Bloating of Clays," J. Am. Ceram. Soc., 34, 121-128, (1951).   DOI
23 S. D. C. Gomes, J. L. Zhou, W. Li, F. Qu "Recycling of raw water treatment sludge in cementitious composites: effects on heat evolution, compressive strength and microstructure" Resour. Conserv. Recycl. 161 104970, (2020).   DOI
24 E. H. Kim, J. K. Cho, S. Yim, "Digested sewage sludge solidification by converter slag for landfill cover" Chemosphere, 59 387-395, (2005).   DOI
25 L. G. G. Godoy, A. B. Rohden, M. R. Garcez, E. B. Costa, S. D. Dalt, J. J. O. Andrade, "Valorization of water treatment sludge waste by application as supplementary cementitious material" Constr. Build. Mater. 223 939-950, (2019).   DOI
26 Y. Liu, Y. Zhuge, C. W. K. Chow, A. Keegan, D. Li, P. N. Pham, J. Huang, R. Siddique, "Utilization of drinking water treatment sludge in concrete paving blocks: Microstructural analysis, durability and leaching properties" J. Environ. Manage. 262 110352, (2020).   DOI
27 Y. Liu, Y. Zhuge, C. W. K. Chow, A. A. Keegan, D. Li, P. N. Pham, J. Huang, R. Siddique, "Properties and microstructure of concrete blocks incorporating drinking water treatment sludge exposed to early-age carbonation curing" J. Clean. Prod. 261 121257, (2020).   DOI
28 A. Benlalla, M. Elmoussaouiti, M. Dahhou, M. Assafi, "Utilization of water treatment plant sludge in structural ceramics bricks" Appl. Clay Sci. 118 171-177, (2015).   DOI
29 C. Huang, J.R. Pan, Y. Liu, "Mixing water treatment residual with excavation waste soil in brick and artificial aggregate making", J. Environ. Eng. 131 272-277, (2005).   DOI
30 A. M. Heniegal, M. A. Ramadan, A. Naguib, I. S. Agwa, "Study on properties of clay brick incorporating sludge of water treatment plant and agriculture waste" Case Stud. Constr. Mater. 13 e00397, (2020).   DOI
31 J. H. Tay, K. Y. Show, "Reuse of Wastewater Sludge in Manufacturing Non-Conventional Construction Materals - An Innovative Approach to Ultimate Sludge Disposal" Water sci. Technol. 26 1165-1174, (1992).   DOI
32 K. D. Kim, J. H. Kim, Y. T. Kim, S. G. Kang, K. G. Lee, "Production of Lightweight Aggregates Using Power Plant Reclaimed Ash", J. Kor. Ceram. Soc. 47 583-589, (2010).   DOI
33 H. S. Kim, S. G. Kang, Y. T. Kim, K. G. Lee, J. H. Kim, "Heavy Metal Leaching Characteristics of Silicate Glass Containing EAF Dust" J. Kor. Ceram. Soc. 43 136-141, (2006).   DOI
34 Y. M. Wie, K. G. Lee, K. H. Lee, and, "Optimum conditions for unit processing of artificial lightweight aggregates using the Taguchi method," J. Asian Ceram. Soc., 7, 331-341, (2019).   DOI
35 Korean Standards Association. "Standard test method for bulk density and solid contents in aggregates" Seoul: South Korea KS F 2503, (2017).
36 J. M. Moreno-Maroto, C. J. Cobo-Ceacero, M. Uceda-Rodriguez, T. Cotes-Palomino, C. M. Garcia, J Alonso-Azcarate, "Unraveling the expansion mechanism in lightweight aggregates: Demonstrating that bloating barely requires gas" Constr. Build. Mater. 247 118583, (2020).   DOI
37 K. G. Lee "Bloating mechanism of lightweight aggregate with the size" J. Korean Ceram. Soc., 53, 241-245, (2016).   DOI
38 J. H. Kim, K. G. Lee, Y. T. Kim, S. K. Kang "Thermal and Leaching Behaviors of EAF Dust-Clay Systems." Mater. Sci. Forum 486-487 105-108, (2005).   DOI
39 A. L. Bulta, G. A. W. Micheal "Evaluation of the efficiency of ceramic filters for water treatment in Kambata Tabaro zone, southern Ethiopia" Environ. Syst. Res. 8 1, (2019).   DOI