• Title/Summary/Keyword: Light Output Efficiency

Search Result 232, Processing Time 0.031 seconds

Latest developments in phosphorescent OLEDs

  • Weaver, M.S.;Adamovich, V.A.;Kwong, R.C.;Hack, M.;Brown, J.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1129-1132
    • /
    • 2005
  • We report state-of-the-art phosphorescent organic light emitting diode lifetime and efficiency performances for a range of emission colors. Lifetimes in excess of 100,000hrs have been demonstrated at display luminance levels for saturated red emission. External quantum efficiencies close to the theoretical maximum (e.g. 23% without enhanced optical output coupling) are also demonstrated for devices with lifetimes in excess of 15,000hrs at a display level luminance for both orange red and green.

  • PDF

Measuring Efficiency of Global Electricity Companies Using Data Envelopment Analysis Model (DEA모형을 이용한 전력회사의 효율성 분석에 관한 연구)

  • Kim, Tae Ung;Jo, Sung Han
    • Environmental and Resource Economics Review
    • /
    • v.9 no.2
    • /
    • pp.349-371
    • /
    • 2000
  • Data Envelopment Analysis model is a linear programming based technique for measuring the relative performance of organizational units where the presence of multiple inputs and outputs makes comparison difficult. A common measure for relative efficiency is weighted sum of outputs divided by weighted sum of inputs. DEA model allows each unit to adopt a set of weight that shows it in the most favorable light in comparison to the other unit. In this paper, we present the mathematical background and characteristics of DEA model, and give a short case study where we apply the DEA model to evaluate the relative efficiencies of 51 global electricity companies. The technical efficiency and scale efficiency are also to be investigated. Generating capacity and the number of employees are used for input data, and revenue, net profit and electricity sales are used for output data. We find that the companies with 100% relative efficiency are only 9 among 51 electricity companies. And the technical and scale efficiency of KEPCO is 98.7% and 78.89%, respectively. This means that the inefficiency of KEPCO is caused by the scale inefficiency. The analysis shows that the employees should be decreased by 15% at minimum to get the 100% efficiency. The result suggests that KEPCO needs the structural reform to improve the efficiency.

  • PDF

High Power Factor High Efficiency PFC AC/DC Converter for LCD Monitor Adapter (LCD 모니터의 어댑터를 위한 고역률 고효율 PFC AC/DC 컨버터)

  • Park K. H.;Kim C. E.;Youn M. J.;Moon G. W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.85-89
    • /
    • 2003
  • Many single-stage PFC(power-facto.-correction) ACHC converters suffer from the high link voltage at high input voltage and light load condition. In this paper, to suppress the link voltage, a novel high power factor high efficiency PFC AC/DC converter is proposed using the single controller which generates two gate signals so that one of them is used far gate signal of the flyback DC/DC converter switch and the other is applied to the Boost PFC stage. A 130w prototype for LCD monitor adapter with universal input $(90-265V_{rms})$ and 19.5V 6.7A output is implemented to verify the operational principles and performances. The experimental results show that the maximum link voltage stress is about 450V at 270Vac input voltage. Moreover, efficiency and power factor are over $84\%$ and 0.95, respectively, under the full load condition.

  • PDF

A Study on High Efficiency Certification Standards of Metal-Halide Lamps and Reflectors using HID Lamps (메탈할라이드 램프 및 HID용 고조도 반사갓의 고효율에너지기자재 인증기술기준 연구)

  • Jeong, Hak-Geun;Lee, Sun-Keun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.160-162
    • /
    • 2004
  • The aim of this study is to make the technical standards for certificating a high efficiency metal-halide lamps and reflectors using the high intensity discharge lamps, to accomplish the practical energy saving effect. Metal-halide lamps are certificated by stabilzed and restarting time, lamp voltage, current, power and light output efficiency. The high illumination reflectors using HID lamps are certificated by testing reflective index, fading, the melting point, glare and install spacing factor.

  • PDF

A Power Regulation and Harmonic Current Elimination Approach for Parallel Multi-Inverter Supplying IPT Systems

  • Mai, Ruikun;Li, Yong;Lu, Liwen;He, Zhengyou
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1245-1255
    • /
    • 2016
  • The single resonant inverter is widely employed in typical inductive power transfer (IPT) systems to generate a high-frequency current in the primary side. However, the power capacity of a single resonant inverter is limited by the constraints of power electronic devices and the relevant cost. Consequently, IPT systems fail to meet high-power application requirements, such as those in rail applications. Total harmonic distortion (THD) may also violate the standard electromagnetic interference requirements with phase shift control under light load conditions. A power regulation approach with selective harmonic elimination is proposed on the basis of a parallel multi-inverter to upgrade the power levels of IPT systems and suppress THD under light load conditions by changing the output voltage pulse width and phase shift angle among parallel multi-inverters. The validity of the proposed control approach is verified by using a 1,412.3 W prototype system, which achieves a maximum transfer efficiency of 90.602%. Output power levels can be dramatically improved with the same semiconductor capacity, and distortion can be effectively suppressed under various load conditions.

A Study on Hybrid Control Unit Using a Smart Control (스마트 제어를 이용한 하이브리드 형 제어장치 연구)

  • Kim, Hee-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.11
    • /
    • pp.1093-1100
    • /
    • 2016
  • This study is to demonstrate the superiority and stability of the solar - wind power hybrid power generation system for street lamps using super capacitor EDLC(:Electric Double Layer Capacitor). It is aiming to apply the lighting device using LED light source as the load of solar-wind power hybrid power generation system for independent power source and to develop the street light system device with high output power generation system. Unlike conventional controllers, EDLC, which is used as an auxiliary device for storing the developed power in the battery, can guarantee the high output and long life of the battery.

Single-Inductor Multiple-Output DC-DC Converter with Negative Feedback Selection Circuit (부궤환 선택회로를 갖는 단일 인덕터 다중 출력 직류-직류 변환기)

  • Gong, Jung-Chul;Roh, Yong-Seong;Moon, Young-Jin;Choi, Woo-Seok;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.23-30
    • /
    • 2011
  • This paper presents a Single-Inductor Multiple-Output (SIMO) DC-DC Converter with a negative feedback selection circuit to improve a regulation property at light load and to generate independent multiple outputs. The conventional SIMO DC-DC converter with a fixed negative feedback circuit cannot regulate correctly at light load. The SIMO DC-DC converter with the proposed negative feedback selection circuit has been designed in 0.35um 2-poly 3-metal BCDMOS. This converter is dual output boost converter with the 1.5V input and 2.5V, 3.0V output. The power conversion efficiency varies from 59% at 10mA loads to 85% at 50mA loads.

Performance Evaluation of Energy Reduction of Light Shelf Applying Punching Plate

  • Choi, Yuchang;Lee, Heangwoo;Seo, Janghoo;Kim, Yongseong
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.5-13
    • /
    • 2014
  • Various studies on lighting energy savings are conducted, given that lighting energy consumption accounts 23.5% of building energy consumption. Especially, external type light shelf's efficiency is acknowledged; however, its application is limited in Korea, where high rise building ratio is high, due to high wind pressure. This study delves into natural lighting system to cope with wind pressure, and proposes the punching plate-installed light shelf. This study actually draws lighting energy output, according to whether the punching plate is applied through the test-bed, and verifies the effectiveness of the punching plate-installed light shelf. The conclusion is presented below: First) The result of performance evaluation of light shelf with the punching plate in winter solstice showed that the awning area decreased as the opening ratio increased so that the indoor distributed illumination tended to increase, and $-40^{\circ}$ which was advantageous for awning was determined as the proper angle. Second) The light shelf with the punching plate in spring/autumn equinox shows improved lighting according to the angle, and the appropriate angle of light shelf with the punching plate has increased to $15^{\circ}$ and $20^{\circ}$ according to the opening ratio in comparison to $5^{\circ}C$ which is the appropriate angle of light shelf with no punching plate due to the reflection area reduced by the reflecting plate with holes. Third) The result of performance evaluation of light shelf with the punching plate in summer solstice showed that the lighting performance tended to decrease as the opening ratio increased. 4) The light shelf with the punching plate incurs a 50% energy loss in comparison to the light shelf with no punching plate. However, its effectiveness has been proven in the aspects that it can bring a 50% energy saving in comparison to the case with no installation of light shelf and that it can be designed in response to wind pressure on the high floors.

Speculation of Optical Cavity for Improving Optical Gas Sensor's Characteristics (광학적 가스센서 특성 향상을 위한 광 공동 구조의 고찰)

  • Yi, Seung-Hwan;Park, Jong-Seon
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.63-68
    • /
    • 2008
  • This paper describes about the simulation and the experimental results of optical cavity with curved mirror surface and vertical mirror surface to improve the light intensity and efficiency of the optical sensors. When we use the vertical mirror surface, the distribution of light reached to the filter surface of detector shows an elliptical shape. Whereas, the curved mirror surface focuses the light into circular shape. Therefore, due to focusing effects in case of using curved mirror surface, the light intensity per unit area has been improved. Consequently, the output voltage of gas sensor has been expected to increase. Based upon the simulation, the experiment of gas sensor has been conducted with $CO_2$ gas from 0ppm to 2,500 ppm at 250 ppm step and $25^{\circ}C$, 45%R.H. ambient. The output voltage of gas sensor that has a curved mirror surface increases approximately 200 mV than that of vertical mirror surface.

  • PDF

A Simulation of Photocurrent Loss by Reflectance of the Front Glass and EVA in the Photovoltaic Module (전면 유리와 EVA의 광 반사에 의한 PV모듈의 광전류 손실 예측 시뮬레이션)

  • Lee, Sang-Hun;Song, Hee-Eun;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.76-82
    • /
    • 2013
  • The solar cell is a device to convert light energy into electric, which supplies power to the external load when exposed to the incident light. The photocurrent and voltage occurred in the device are significant factors to decide the output power of solar cells. The crystalline silicon solar cell module has photocurrent loss due to light reflections on the glass and EVA(Ethylene Vinyl Acetate). These photocurrent loss would be a hinderance for high-efficiency solar cell module. In this paper, the quantitative analysis for the photocurrent losses in the 300-1200 wavelength region was performed. The simulation method with MATLAB was used to analyze the reflection on a front glass and EVA layer. To investigate the intensity of light that reached solar cells in PV(Photovoltaic) module, the reflectance and transmittance of PV modules was calculated using the Fresnel equations. The simulated photocurrent in each wavelength was compared with the output of real solar cells and the manufactured PV module to evaluate the reliability of simulation. As a result of the simulation, We proved that the optical loss largely occurred in wavelengths between 300 and 400 nm.