• Title/Summary/Keyword: Levi-Civita

Search Result 33, Processing Time 0.027 seconds

On the Development of Differential Geometry from mid 19C to early 20C by Christoffel, Ricci and Levi-Civita (크리스토펠, 리치, 레비-치비타에 의한 19세기 중반부터 20세기 초반까지 미분기하학의 발전)

  • Won, Dae Yeon
    • Journal for History of Mathematics
    • /
    • v.28 no.2
    • /
    • pp.103-115
    • /
    • 2015
  • Contemporary differential geometry owes much to the theory of connections on the bundles over manifolds. In this paper, following the work of Gauss on surfaces in 3 dimensional space and the work of Riemann on the curvature tensors on general n dimensional Riemannian manifolds, we will investigate how differential geometry had been developed from mid 19th century to early 20th century through lives and mathematical works of Christoffel, Ricci-Curbastro and Levi-Civita. Christoffel coined the Christoffel symbol and Ricci used the Christoffel symbol to define the notion of covariant derivative. Levi-Civita completed the theory of absolute differential calculus with Ricci and discovered geometric meaning of covariant derivative as parallel transport.

EXACTNESS OF COCHAIN COMPLEXES VIA ADDITIVE FUNCTORS

  • Campanini, Federico;Facchini, Alberto
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1075-1085
    • /
    • 2020
  • We investigate the relation between the notion of e-exactness, recently introduced by Akray and Zebary, and some functors naturally related to it, such as the functor P : Mod-R → Spec(Mod-R), where Spec(Mod-R) denotes the spectral category of Mod-R, and the localization functor with respect to the singular torsion theory.

YANG-MILLS CONNECTIONS ON A COMPACT CONNECTED SEMISIMPLE LIE GROUP

  • Park, Joon-Sik
    • East Asian mathematical journal
    • /
    • v.26 no.1
    • /
    • pp.75-79
    • /
    • 2010
  • Let G be a compact connected semisimple Lie group, g the Lie algebra of G, g the canonical metric (the biinvariant Riemannian metric which is induced from the Killing form of g), and $\nabla$ be the Levi-Civita connection for the metric g. Then, we get the fact that the Levi-Civita connection $\nabla$ in the tangent bundle TG over (G, g) is a Yang-Mills connection.

YANG-MILLS INDUCED CONNECTIONS

  • Park, Joon-Sik;Kim, Hyun Woong;Kim, Pu-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.813-821
    • /
    • 2010
  • Let G and H be compact connected Lie groups with biinvariant Riemannian metrics g and h respectively, ${\phi}$ a group isomorphism of G onto H, and $E:={\phi}^{-1}TH$ the induced bundle by $\phi$ over the base manifold G of the tangent bundle TH of H. Let ${\nabla}$ and $^H{\nabla}$ be the Levi-Civita connections for the metrics g and h respectively, $\tilde{\nabla}$ the induced connection by the map ${\phi}$ and $^H{\nabla}$. Then, a necessary and sufficient condition for $\tilde{\nabla}$ in the bundle (${\phi}^{-1}TH$, G, ${\pi}$) to be a Yang- Mills connection is the fact that the Levi-Civita connection ${\nabla}$ in the tangent bundle over (G, g) is a Yang- Mills connection. As an application, we get the following: Let ${\psi}$ be an automorphism of a compact connected semisimple Lie group G with the canonical metric g (the metric which is induced by the Killing form of the Lie algebra of G), ${\nabla}$ the Levi-Civita connection for g. Then, the induced connection $\tilde{\nabla}$, by ${\psi}$ and ${\nabla}$, is a Yang-Mills connection in the bundle (${\phi}^{-1}TH$, G, ${\pi}$) over the base manifold (G, g).

THE TORSION OF THE CHARACTERISTIC CONNECTION

  • Kim, Hwajeong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.599-608
    • /
    • 2012
  • In [2], [8], the author studied the characteristic connection as a good substitute for the Levi-Civita connection. In this paper, we consider the space $U(3)=(U(1){\times}U(1){\times}U(1))$ with an almost Hermitian structure which admits a characteristic connection and compute the characteristic connection concretely.

Proposing a Connection Method for Measuring Differentiation of Tangent Vectors at Shape Manifold (형태 다양체에서 접벡터 변화량을 측정하기 위한 접속 방식 제안)

  • Hahn, Hee-Il
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.2
    • /
    • pp.160-168
    • /
    • 2013
  • In this paper an algorithm that represents shape sequences with moving frames parallel along the sequences are developed. According to Levi-Civita connection, it is not easy to measure the variation of the vector fields on non-Euclidean spaces without tools to parallel transport them. Thus, parallel transport of the vector fields along the shape sequences is implemented using the theories of principal frame bundle and analyzed via extensive simulation.

A FAMILY OF CHARACTERISTIC CONNECTIONS

  • Kim, Hwajeong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.843-852
    • /
    • 2013
  • The characteristic connection is a good substitute for Levi-Civita connection in studying non-integrable geometries. In this paper we consider the homogeneous space $U(3)/(U(1){\times}U(1){\times}U(1))$ with a one-parameter family of Hermitian structures. We prove that the one-parameter family of Hermtian structures admit a characteristic connection. We also compute the torsion of the characteristic connecitons.