• Title/Summary/Keyword: Level Flight

Search Result 498, Processing Time 0.024 seconds

Development of Runway Incursion Risk Assessment Checklist (활주로 침범 위험 분석 체크리스트 개발)

  • Maeng, Sung-Kyu;Jung, Yoon-Sik;Choi, Jin-Kook;Kwon, Bo-Hun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.1
    • /
    • pp.46-54
    • /
    • 2012
  • One major safety issue of surface operations is the occurrence of runway incursions. Runway incursions are the consequence of multiple operational and/or environmental factors. Human error is known to contribute to almost every runway incursion. One major contributing factor for runway incursion is crew's lack of situational awareness during airport surface operations, induced by weather considerations, by complex airport factors or by crew technique itself; it is also caused by ATC issues. Various airport factors may affect pilot situational awareness, distract the crew, or lead to crew confusion. The recommendations to avoid runway incursions are manifold; Proper Crew's CRM/TEM skills, adequate communication technique, proper knowledge of airport surface markings, lights and signs and preparation of preparation of expected taxi out/in routing. Also runway incursion risk assessment on specific airport before flight may lead to aware of risk level and contribute to prevent runway incursion.

Shock Response Prediction of a Low Altitude Earth Observation Satellite During Launch Vehicle Separation

  • Lee, Dae-Oen;Han, Jae-Hung;Jang, Hae-Won;Woo, Sung-Hyun;Kim, Kyung-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2010
  • Several pyrotechnic devices are employed over the course of satellite's missions, generally for the separation of structural subsystems and deployment of appendages. Firing of pyrotechnic devices results in impulsive loads characterized by high peak acceleration and high frequency content which can cause failures of various flight hardware elements and small components. Thus, accurate prediction of acceleration level in various components of spacecraft due to pyrotechnic devices is important. In this paper, two methods for pyroshock prediction, an empirical model and statistical energy analysis in conjunction with virtual mode synthesis, are applied to predict shock response of a low altitude earth observation satellite during launch vehicle separation. The predicted results are then evaluated through comparison with the shock test results.

Structural Characterization of Non-reducing Oligosaccharide Produced by Arthrobacter crystallopoietes N-08

  • Bae, Bum-Sun;Shin, Kwang-Soon;Lee, Ho
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.519-525
    • /
    • 2009
  • A bacterial strain (Strain N-08) capable of extracellularly producing high level of non-reducing oligosaccharide (NR-OS) isolated from soil. The strain was identified phylogenetically by 16S rDNA sequence analysis and found to be very close to Arthrobacter crystallopoietes. The high production of NR-OS was observed in the basal culture medium containing maltose as a sole carbon source. The NR-OS in culture supernatant was purified by glucoamylase treatment and Dowex-1 (OH.) ion exchange chromatography and its structure was characterized. This oligosaccharide consisted of only glucose. Methylation analysis indicated that this fraction was composed mainly of non-reducing terminal glucopyranoside. Matrixassisted laser-induced/ionization time-of-flight (MALDI-TOF) and electrospray ionization-mass spectrometry (ESI-MS)/MS analyses suggested that this oligosaccharide comprised non-reducing disaccharide unit with 1,1-glucosidic linkage. When this disaccharide was analyzed by $^1H$-NMR and $^{13}C$-NMR, it gave the same signals with $\alpha$-D-glucopyranosyl-(1,1)-$\alpha$-Dglucopyranoside. These results indicated that the NR-OS produced by A. crystallopoietes N-08 was ${\alpha}1$,${\alpha}1$-trehalose. This is the first report of the trehalose which can be produced directly from maltose by A. crystallopoietes N-08.

The Kinematic Difference to the Skill Level in the Yurchenko Stretch Skill of Horse Vaulting (도마 유리첸코 동작 시 숙련도에 따른 운동학적 차이)

  • Yoon, Chang-Sun;Kim, Tae-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.135-144
    • /
    • 2006
  • This study was to investigate the kinematic analysis to score of the Yurchenko stretch skill according to phases in a horse vaulting. For this study, 8 male national gymnasts were participated in acquiring three dimensional kinematical imagining data with four Sony PD-150 video cameras After digitizing motion, the Direct Linear Transformation(DLT) technique was employed to obtain 3-D position coordinates. The kinematic factors of the distance, velocity and angle variable were calculated for Kwon3D 3.1. The following conclusions were drawn; 1) The COG resultant velocity of the less skilled group decreased in PRF phase because the less skilled group had a larger flexion-knee angle than the skilled group in BC phase, Because the less skilled group had larger flexion-shoulder angle than the skilled group in HTO phase, At blocking movement, the body inclined a moving direction. By means of it, COG lowered 2) The skilled group had a more rapid COG's vertical velocity than the less skilled group at HTD and HTO event in HC phase, because this was performed the blocking movement with body angle and contacted on a horse vaulting small and its time short by means of contacting hands on a horse vaulting quickly. Such blocking movement made the vertical up-flight movement easy at POF phase bringing out rapid COG's vertical velocity after take off a horse vaulting.

Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo;Ji, Kuk-Hyun;Paik, Seung-Hoon
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.373-407
    • /
    • 2008
  • This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.

The introduction of Engine Performance Test for Miniature Turbojet Engine considering humidity effects (습도 영향을 고려한 초소형 터보제트 엔진 성능시험 소개)

  • Lee, Bo-Hwa;Lee, Kyung-Jae;Yang, Soo-Seok;Kim, Yu-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.335-338
    • /
    • 2010
  • The moisture in the atmosphere exerts a lot of influence upon Gas turbine engine performances. There is a noticeable influence of wet air at the summer sea level, high flight mach number and low engine rpm increasingly. An altitude Engine Test Facility is used to accomplish the engine performance tests at dry air condition and wet air condition, through which engine performance results is revealed. In the result, net thrust and specific fuel consumption measured -2.826% and 1.325%, respectively at wet air condition compared to dry air condition.

  • PDF

Polarity Verification of Direction Cosine Matrix of Gyro Sensor Using The Earth Rotational Rate (지구 회전 각속도를 이용한 자이로센서의 방향코사인행렬 극성검증)

  • Oh, Shi-Hwan;Kim, Jin-Hee
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.49-55
    • /
    • 2011
  • A Direction Cosine Matrix (DCM) of each satellites sensor/actuator which contains an directional information of sensor/actuator is implemented in the on-board flight software. In order to verify the polarity of direction cosine matrix, it is mostly used that an actual sensor/actuator output is compared with the expected output value which responses to the pre-defined external stimulus to the sensor/actuator. For the gyro sensors, the Earth rotational rate can be used as an external input for the polarity verification of DCM, without using an artificial stimulus. In this study, the polarity of gyro DCM is checked and verified using the several test data which have been acquired during the different system level test phases. Finally the polarity of DCM was successfully verified using the Earth rotational rate.

A Study on the relative Efficiency of ATC Towers in Domestic Airports (국내공항 관제탑의 상대적 효율성에 관한 연구)

  • Kim, D.H.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.11 no.2
    • /
    • pp.59-77
    • /
    • 2003
  • Air Traffic Control Tower is one of the most important units in Airport operation. It provides services related to safe and efficient traffic flows that control aircraft on the ground maneuvering area and terminal airspace. Also It is responsible for managing of ground operators. The major objective of this study is to evaluates relative efficiency of ATC towers in Domestic airports using data envelopment analysis so that it helps the ATC authority to improve the tower efficiency, to decide the level of benchmarking target and to establish the best alternative. The results of this study are the following; First, as a result of analysis for the potential improvement, it has analysed that the common problems of each ATC tower are to increase its number of flight and to reduce its number of runway followed by airside area, the number of air traffic controller and the number of stand. Second, it has shown that the each tower in RKPC(8), RKPT(5), RKPK(l) and RKSS(l) are used as the reference set. Especially, the tower in RKPC analyzed as a relatively efficient unit is the most main target for the towers in RKTU, RKTH, RKPS and RKTY to do bench marking and to set up the strategy for improving relative efficiency of the tower. Third, tower is actually not able to control the input and output data in this study except the number of controller, so that ATC authority is recommended to improve inefficiency of the towers through handling the number of controller.

  • PDF

Avionics Parts Certification Trend (항공전자 부품의 인증동향)

  • Han, Sang-Ho
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.131-139
    • /
    • 2010
  • Avionics technologies have been developed with a development of an airplane since 1903. Historically, radio communication was started in 1910's, radio navigations in 1920's and autopilot was applied first in 1930's. Glass cockpit was initiate on MD-80 in 1979 first and now spreaded widely and similar with GPS navigation. Avionics in modern aircraft has a great deal of importance in view of flight safety and maintaining comfortableness. As avionics develops, so do the certification technologies. This paper introduces update avionics certification technologies developed recently.

  • PDF

Conceptual Design Study of Two-Stage Hypersonic Scramjet Vehicle (2단 초음속 스크램제트 비행체의 개념설계 연구)

  • Lee, Kyung-Jae;Kang, Sang-Hun;Yang, Soo-Seok;Park, Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.309-317
    • /
    • 2011
  • In this study, two-stage hypersonic scramjet vehicle was designed for the flight condition of Mach number 6. In order to launch at sea level and Mach number 0, two stage concept was applied. The first stage of the vehicle is rocket-powered and is mounted under the second stage. The second stage is scramjet-powered propulsion system and has wing. The suggested mission scenario is to deliver 0.2 ton payload to the range less of 2000km. For the first step of conceptual design, trajectory of air vehicle was calculated by 3-DOF trajectory code. Based on the result of trajectory code, scramjet engine design and mass estimation were performed by non-equilibrium nozzle flow code and NASA's HASA model, respectively. In order to find best solution, all step of designing process was iterated until they were converged.

  • PDF