Browse > Article

Structural Characterization of Non-reducing Oligosaccharide Produced by Arthrobacter crystallopoietes N-08  

Bae, Bum-Sun (Department of Food Science and Biotechnology, Kyonggi University)
Shin, Kwang-Soon (Department of Food Science and Biotechnology, Kyonggi University)
Lee, Ho (Department of Food Science and Biotechnology, Kyonggi University)
Publication Information
Food Science and Biotechnology / v.18, no.2, 2009 , pp. 519-525 More about this Journal
Abstract
A bacterial strain (Strain N-08) capable of extracellularly producing high level of non-reducing oligosaccharide (NR-OS) isolated from soil. The strain was identified phylogenetically by 16S rDNA sequence analysis and found to be very close to Arthrobacter crystallopoietes. The high production of NR-OS was observed in the basal culture medium containing maltose as a sole carbon source. The NR-OS in culture supernatant was purified by glucoamylase treatment and Dowex-1 (OH.) ion exchange chromatography and its structure was characterized. This oligosaccharide consisted of only glucose. Methylation analysis indicated that this fraction was composed mainly of non-reducing terminal glucopyranoside. Matrixassisted laser-induced/ionization time-of-flight (MALDI-TOF) and electrospray ionization-mass spectrometry (ESI-MS)/MS analyses suggested that this oligosaccharide comprised non-reducing disaccharide unit with 1,1-glucosidic linkage. When this disaccharide was analyzed by $^1H$-NMR and $^{13}C$-NMR, it gave the same signals with $\alpha$-D-glucopyranosyl-(1,1)-$\alpha$-Dglucopyranoside. These results indicated that the NR-OS produced by A. crystallopoietes N-08 was ${\alpha}1$,${\alpha}1$-trehalose. This is the first report of the trehalose which can be produced directly from maltose by A. crystallopoietes N-08.
Keywords
structure; non-reducing oligosaccharide; trehalose; Arthrobacter crystallopoietes;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Waeghe TJ, Darvill AG, McNeil M, Albersheim P. Determination by methylation analysis of the glycosyl linkage compositions of microgram quantities of complex carbohydrates. Carbohyd. Res. 123: 281-304 (1983)   DOI   ScienceOn
2 Sweet DP, Shapiro RH, Albersheim P. Quantitative analysis by various G.L.C. response-factor theories for partially methylated and partially ethylated alditol acetates. Carbohyd. Res. 40: 217-225 (1975)   DOI   ScienceOn
3 Goubet I, Dahout C, Semon E, Guichard E, Le Quere JL, Voilley A. Competitive binding of aroma compounds by beta-cyclodextrin. J. Agr. Food Chem. 49: 5916-5922 (2001)   DOI   ScienceOn
4 Thevelein JM. Regulation of trehalose mobilization in fungi. Microbiol. Rev. 48: 42-59 (1984)
5 Kandror O, DeLeon A, Goldberg AL. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. P. Natl. Acad. Sci. USA 99: 9727-9732 (2002)   DOI   ScienceOn
6 Styrvold OB, Strom AR. Synthesis, accumulation, and excretion of trehalose in osmotically stressed Escherichia coli K-12 strains:Influence of amber suppressors and function of the periplasmic trehalase. J. Bacteriol. 173: 1187-1192 (1991)   DOI
7 Roser B. Trehalose, a new approach to premium dried foods. Trends Food Sci. Tech. 7: 166-169 (1991)
8 Somogyi M. Notes on sugar determination. J. Biol. Chem. 195: 19-23 (1952)   PUBMED
9 Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791 (1985)   DOI   ScienceOn
10 Tran CD, De Paoli Lacerda SH. Determination of binding constants of cyclodextrins in room-temperature ionic liquids by near-infrared spectrometry. Anal. Chem. 74: 5337-5341 (2002)   DOI   ScienceOn
11 Lee CH, Oh SW, Kim IH, Kim YE, Hwang JH, Yu KW. Chemical properties and immunological activities of hot-water extract from leaves of saltwort. Food Sci. Biotechnol. 13: 167-171 (2004)
12 Nakada T, Maruta K, Mitzuzumi H, Kubota M, Chaen H, Sugimoto T, Kurimoto M, Tsujisaka Y. Purification and characterization of a novel enzyme, maltooligosyl trehalose trehalohydrolase, from Arthrobacter sp. Q36. Biosci. Biotech. Bioch. 59: 2215-2218 (1995)   DOI   ScienceOn
13 Wingler A. The function of trehalose biosynthesis in plants. Phytochemistry 60: 437-440 (2002)   DOI   PUBMED   ScienceOn
14 Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425 (1987)   PUBMED
15 Kizawa H, Miyazaki J, Yokota A, Kanegae Y, Miyagawa K, Sugiyama Y. Trehalose production by a strain of Micrococcus varians. Biosci. Biotech. Bioch. 59: 1522-1527 (1995)   DOI
16 Chen YS, Lee GC, Shaw JF. Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridus in Escherichia coli. J. Agr. Food Chem. 54: 7098-7104 (2006)   DOI   ScienceOn
17 Lillie SH, Pringle JR. Reserve carbohydrate metabolism in Saccharomyces cerevisiae: Responses to nutrient limitation. J. Bacteriol. 143: 1384-1394 (1980)
18 Kaushik JK, Bhat R. Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J. Biol. Chem. 278:26458-26465 (2003)   DOI   ScienceOn
19 Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek APM, Waalkens-Berendsen DH, Shigoyuki A, Kurimoto M. Trehalose: A review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem. Toxicol. 40: 871-898 (2002)   DOI   ScienceOn
20 Kim BY, Lee SY, Weon HY, Kwon SW, Go SJ, Park YK, Schumann P, Fritze D. Ureibacillus suwonensis sp. nov., isolated from cotton waste composts. Int. J. Syst. Evol. Micr. 56: 663-666 (2006)   DOI   ScienceOn
21 Maruta K, Nakada T, Kubota M, Chaen H, Sugimoto T, Kurimoto M, Tsujisaka Y. Formation of trehalose from maltooligosaccharides by a novel enzymatic system. Biosci. Biotech. Bioch. 59: 1829-1834 (1995)   DOI   ScienceOn
22 Marechal LR, Belocopitow E. Metabolism of trehalose in Euglena gracilis. I. Partial purification and some properties of trehalose phosphorylase. J. Biol. Chem. 247: 3223-3228 (1972)   PUBMED
23 Nishimoto T, Nakada T, Chaen H, Fukuda S, Sugimoto T, Kurimoto M, Tsujisaka Y. Purification and characterization of a thermostable trehalose synthase from Thermus aquatics. Biosci. Biotech. Bioch. 60: 835-839 (1996)   DOI
24 French D. The Schardinger dextrins. Adv. Carbohyd. Chem. 12:189-260 (1957)   PUBMED
25 Nishimoto T, Nakano M, Nakada T, Chaen H, Fukuda S, Sugimoto T, Kurimoto M, Tsujisaka Y. Purification and properties of novel enzyme, trehalose synthase, from Pimelobacter sp. R48. Biosci. Biotech. Bioch. 60: 640-644 (1996)   DOI   ScienceOn
26 Nelson N. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375-380 (1944)
27 Higashiyama T. Novel functions and applications of trehalose. Pure Appl. Chem. 74: 1263-1269 (2002)   DOI   ScienceOn
28 Ohguchi M, Kubota N, Wada T, Yoshinaga K, Uritani M, Yagisawa M, Ohisgi K, Yamagishi M, Ohta T, Ishikawa K. Purification and properties of trehalose-synthesizing enzyme from Pseudomonas sp. F1. J. Ferment. Bioeng. 84: 358-360 (1997)   DOI   ScienceOn
29 Jones TM, Albersheim P. A gas chromatography method for the determination of aldose and uronic acid constituents of plant cell wall polysaccharide. Plant Physiol. 49: 926-936 (1972)   DOI   ScienceOn
30 Nishimoto T, Nakano M, Ikegami S, Chaen H, Fukuda S, Sugimoto T, Kurimoto M, Tsujisaka Y. Existence of a novel enzyme converting maltose into trehalose. Biosci. Biotech. Bioch. 59: 2189-2190 (1995)   DOI
31 Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85: 1017-1025 (1996)   DOI   ScienceOn
32 Elbein AD, Pan YT, Pastuszak I, Carroll D. New insights on trehalose: A multifunctional molecule. Glycobiology 13: 17-27 (2003)   DOI   ScienceOn
33 Kimura M. Estimation of evolutionary distances between homologous nucleotide sequences. P. Natl. Acad. Sci. USA 78: 454-458 (1981)   DOI   ScienceOn
34 Giaever HM, Styrvold OB, Kaasen I, Strom AR. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J. Bacteriol. 170: 2841-2849 (1988)   DOI
35 Paiva CL, Panek AD. Biotechnological applications of the disaccharide trehalose. Biotechnol. Annu. Rev. 2: 293-314 (1996)   DOI   PUBMED
36 Choi HD, Seog HM, Choi IW, Lee CH, Shin KS. Molecular structure of β-glucans isolated from non-waxy and waxy barley. Food Sci. Biotechnol. 13: 744-748 (2004)
37 Pauly M, Eberhard S, Albersheim P, Darvill A, York WS. Effects of the mur1 mutation on xyloglucans produced by suspension cultured Arabidopsis thaliana cells. Planta 214: 67-74 (2001)   DOI   ScienceOn
38 Nakada T, Maruta K, Mitzuzumi H, Tsukaki K, Kubota M, Chaen H, Sugimoto T, Kurimoto M, Tsujisaka Y. Purification and properties of a novel enzyme, maltooligosyl trehalose synthase, from Arthrobacter sp. Q36. Biosci. Biotech. Bioch. 59: 2210-2214 (1995)   DOI   ScienceOn
39 Guo N, Puhlev I, Brown DR, Mansbridge J, Levine F. Trehalose expression confers desiccation tolerance on human cells. Nat. Biotechnol. 18: 168-171 (2000)   DOI   ScienceOn
40 Hakomori S. A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J. Biochem. -Tokyo 55: 205-208 (1964)
41 Silva Z, Alarico S, Nobre A, Horlacher R, Marugg J, Boos W, Mingote AI, Da Costa MS. Osmotic adaptation of Thermus thermophilus RQ-1: Lesson from a mutant deficient in synthesis of trehalose. J. Bacteriol. 185: 5943-5952 (2003)   DOI   ScienceOn
42 Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 (1956)   DOI
43 Lama L, Nicolaus B, Trincone A, Morzillo P, De Rosa M, Gambacorta A. Starch conversion with immobilized thermophilic archaebacterium Sulfolobus solfataricus. Biotechnol. Lett. 12: 431-432 (1990)   DOI
44 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976)   DOI   PUBMED   ScienceOn
45 Kaasen I, McDougall J, Strom AR. Analysis of the otsBA operon for osmoregulatory trehalose synthesis in Escherichia coli and homology of the OtsA and OtsB proteins to the yeast trehalose-6-phosphate synthase/phosphatase complex. Gene 145: 9-15 (1994)   DOI   ScienceOn
46 Kato M, Miura Y, Kettoku M, Shindo K, Iwamatsu A, Kobayashi K. Purification and characterization of new trehaloseproducing enzymes isolated from the hyperthermophilic archae, Sulfolobus solfataricus KM1. Biosci. Biotech. Bioch. 60: 546-550 (1996)   DOI   ScienceOn