• Title/Summary/Keyword: Leu. lactis

Search Result 22, Processing Time 0.019 seconds

Use of the Cellulase Gene as a Selection Marker of Food-grade Integration System in Lactic Acid Bacteria

  • Lee, Jung-Min;Jeong, Do-Won;Lee, Jong-Hoon;Chung, Dae-Kyun;Lee, Hyong-Joo
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1221-1227
    • /
    • 2008
  • The application of the cellulase gene (celA) as a selection marker of food-grade integration system was investigated in Lactobacillus (Lb.) casei, Lactococcus lactis, and Leuconostoc (Leu.) mesenteroides. The 6.0-kb vector pOC13 containing celA from Clostridium thermocellum with an integrase gene and a phage attachment site originating from bacteriophage A2 was used for site-specific recombination into chromosomal DNA of lactic acid bacteria (LAB). pOC13 was also equipped with a broad host range plus replication origin from the lactococcal plasmid pWV01, and a controllable promoter of nisA ($P_{nisA}$) for the production of foreign proteins. pOC13 was integrated successfully into Lb. casei EM116, and pOC13 integrants were easily detectable by the formation of halo zone on plates containing cellulose. Recombinant Lb. casei EM 116::pOC13 maintained these traits in the absence of selection pressure during 100 generations. pOC13 was integrated into the chromosome of L. lactis and Leu. mesenteroides, and celA acted as an efficient selection marker. These results show that celA can be used as a food-grade selection marker, and that the new integrative vector could be used for the production of foreign proteins in LAB.

In Vitro Probiotic Properties of Indigenous Dadih Lactic Acid Bacteria

  • Surono, Ingrid S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.726-731
    • /
    • 2003
  • The aim of this research was to identify candidate probiotic lactic bacteria among indigenous dadih lactic isolates. Dadih is an Indonesian traditional fermented milk of West Sumatra which is fermented naturally. Viability of the strain is critical in determining the capacity of lactic bacteria to induce immune stimulation as well as to colonize in the intestinal tract. Therefore, LAB are proposed to exert health promoting or probiotic effects in human, such as inhibition of pathogenic microflora, antimutagenic, and the reduction of cholesterol levels. This manuscript reports in vitro probiotic properties of indigenous dadih lactic bacteria, especially some important colonization factors in GI tract, such as lysozyme, acid and bile tolerance. Bile Salt Hydrolase (BSH) activity, spectrum of bacteriocin, and antimutagenic activity of bacterial cells were also assessed. Twenty dadih lactic isolates were screened further for their tolerance to low pH, at pH 2 and 3 as well as their bile tolerance. There were ten isolates classified as acid and bile acid tolerant, and further screened for lysozyme tolerance, BSH activity. The spectrum of bacteriocin activity of isolates was assayed using cell-free neutralized supernatants by agar spot test against variety of pathogens. Lc. lactis subsp. lactis IS-10285, IS-7386, IS-16183, IS-11857 and IS-29862, L. brevis IS-27560, IS-26958 and IS-23427, Leu.mesen.mesenteroides IS-27526, and L. casei IS-7257 each has good survival rate at low pH values and in the presence of lysozyme, and short lag time in the presence of 0.3 % oxgall. Lc. lactis subsp. lactis IS-11857 and IS-29862 each has high BHS activity, Lc. lactis subsp. lactis IS-10285 and IS-16183 each had a positive spectrum of bacteriocin activity against E. coli 3301 and Lysteria monocytogenes ATCC 19112, while L. brevis IS-26958 has high BHS activity as well as positive spectrum of bacteriocin against E. coli 3301, Lysteria monocytogenes ATCC 19112, and S. aureus IFO 3060. All of the ten dadih lactic strains performed in vitro acid and bile tolerance, indicating a possibility to reach the intestine alive, and display probiotic activities.

Kefir 유래의 미생물을 이용하여 제조한 발효유의 특성에 관한 연구

  • Kim, Hyeon-Cheol;Kim, Tae-Jin;Sin, Hui-Cheol;Song, Jin-Uk;Lee, Jong-Ik;Yu, Je-Hyeon
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2004.05a
    • /
    • pp.322-325
    • /
    • 2004
  • Kefir에서 유산균인 Lactobacillus acidophilus와 Lactococcus lactis 그리고 효모인 Candida kefir를 분리하였고, 이를 이용하여 FM(Fermented milk) A, B, C 제조${\cdot}$분석하였다. 유산균 수는 FM B가 $8.6{\times}\;10^9\;cfu/ml$로 가장 많았고, 효모수는 FM C가 $1.3{\times}\;10^7cfu/ml$로 가장 많았다. 알콜 함량은 FM C가 3.2%, FM A가 0.98%, FM B가 0.15% 였다. 아미노산은 FM A에서는 Glu, Pro, Leu, Lys, Asp 등이, FM B에서는 Glu, Leu, Pro, Lys 등이, FM C에서는 Glu, Leu, Pro, Lys 등이 주요 아미노산으로 나타났다. 지방산은 FM A, FM B, FM C 모두 palmitic acid(Cl6:0)와 oleic acid(Cl8:1)가 각각 33.5${\sim}$37.7%와 22.1${\sim}$22.4%의 수준으로 주요 지방산을 차지하였다. 관능검사 결과FM C가 가장 높은 점수를 받았으며, 다음은 FM A, FM B 순이었다.

  • PDF

Identification of the Cell-envelope Proteinase of Lactic Acid Bacteria Isolated from Kimchi. (김치 유래 젖산균의 Cell-envelope Proteinase 존재 확인)

  • 이유진;최재연;이형주;장해춘;김정환;정대균;김영석;김소미;이종훈
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.2
    • /
    • pp.116-122
    • /
    • 2002
  • The partial 165 rDNA sequences of 6 lactic acid bacterial strains isolated from Kimchi were determined. Two strains were Leuconostoc mesenteroides and the rest were incorrectly classified and turned out to be Lactobacillus. As the case of dairy lactic acid bacteria, the strains isolated from Kimchi also had cell-envelope proteinase (CEP) activity. As the result of partial CEP gene amplification with CEP-specific primers, the expected 1.2-kb amplificate was obtained not from Leu. mesenteroides but from Lactobacillus strains. The deduced amino acid sequence of PCR product amplified from the genomic DNA of Lactobacillus pentosus KFR1821 showed 95% and 92% homology with those of PrtPs from Lactococcus lactis subsp. cremoris and Lactobacillus paracasei subsp. paracasei, respectively. The PCR amplificate was used as a probe and the result of Southern hybridization illuminated the location of CEP gene in chromosomal DNA of Lb. pentosus KFR1821.

Identification of Psychrotrophic Lactic Acid Bacteria Isolated from Kimchi (김치에서 분리한 저온성 젖산균의 동정)

  • So, Myung-Hwan;Kim, Young-Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.495-505
    • /
    • 1995
  • The purpose of this study was to identify the psychrotrophic lactic acid bacteria isolated from kimchi, a Korean traditional fermented vegetable food. Thirty isolates of psychrotrophic lactic acid bacteria were isolated randomly from kimchi-A and kimchi-B which were fermented at $5{\sim}7^{\circ}C$ for 20 days and 50 days, respectively. Among 30 isolates of lactic acid bacteria isolated from kimchi-A, 14 isolates were identified as Leuconostoc mesenteroides subsp. mesenteroides, 12 as Leuconostoc mesenteroides subsp. dextranicum and 4 as Lactobacillus bavaricus. Among 30 isolates isolated from kimchi-B, 20 isolates were identified as Lactobacillus bavaricus, 3 as Leuconostoc mesenteroides subsp. mesenteroides, 3 as Leuconostoc lactis, 2 as Leuconostoc paramesenteroides and 2 as Lactobacillus homohiochii. Though these strains were identified as above, there were many strains whose sugar fermenting patterns and $NH_3$ producing ability from arginine were inconsistent with those described in Bergey's Manual of Systematic Bacteriology, and some strains identified as Leuconostoc mesenteroides subsp. mesenteroides and Leuconostoc mesenteroides subsp. dextranicum even disclosed such contradictions as the comparisons of sugar fermenting patterns between the strains of different subspecies were much more coincident than those between the same subspecies. As there were difficulties in classifying these psychrotrophic lactic acid bacteria according to the current taxonomic system, further studies were needed to solve these problems.

  • PDF

Antibacterial activity of lactic acid bacteria isolated from traditional fermented foods and development of a starter for fermented milk (전통발효식품에서 분리한 유산균의 항균 활성 및 발효유 스타터 개발)

  • Park, Jong-Hyuk;Moon, Hye-Jung;Oh, Jeon-Hui;Lee, Joo-Hee;Choi, Kyung-Min;Cha, Jeong-Dan;Lee, Tae-Bum;Lee, Min-Jeong;Jung, Hoo-Kil
    • Food Science and Preservation
    • /
    • v.20 no.5
    • /
    • pp.712-719
    • /
    • 2013
  • This study was conducted to investigate the antibacterial activity of lactic acid bacteria isolated from traditional fermented foods and to develop a new starter for fermented milk. The isolates were identified using 16S rDNA sequencing and named Lactobacillus plantarum A, Leuconostoc lactis B and L. acidophilus C. The activity of these strains to inhibit the growth of food-borne human pathogens (Escherichia coli NCTC 12923, Salmonella Typhimurium NCTC 12023, Listeria monocytogenes NCTC 11994) was measured using the paper disc method. All these strains showed strong antibacterial activity against Li. monocytogenes NCTC 11994. The experiment groups were the fermented milks with these strains, and the control group was the fermented milk with the commercial starter (ABT 5). The change of pH, acidity and viable cell counts were measured during their aging time. All the experiment groups showed a significant difference in their aging times compared to the control group. However, the sensory test showed that the experiment groups can be used as useful starters for fermented milk. This result suggests that L. plantarum A, Leu. lactis B and L. acidophilus C have the potential to be developed as new starters for fermented milk.

Identification and Characterization of a Novel Antioxidant Peptide from Bovine Skim Milk Fermented by Lactococcus lactis SL6

  • Kim, Sang Hoon;Lee, Ji Yoon;Balolong, Marilen P.;Kim, Jin-Eung;Paik, Hyun-Dong;Kang, Dae-Kyung
    • Food Science of Animal Resources
    • /
    • v.37 no.3
    • /
    • pp.402-409
    • /
    • 2017
  • A novel peptide having free radical scavenging activity was separated, using an on-line high-performance liquid chromatography (HPLC) - ABTS screening method, from bovine skim milk fermented by Lactococcus lactis SL6 (KCTC 11865BP). It was further purified using reverse phase-HPLC (RP-HPLC) and sequenced by RP-HPLC-tandem mass spectrometry. The amino acid sequence of the identified peptide was determined to be Phe-Ser-Asp-Ile-Pro-Asn-Pro-Ile-Gly-Ser-Glu-Asn-Ser-Glu-Lys-Thr-Thr-Met-Pro-Leu-Trp (2,362 Da), which is corresponding to the C-terminal fragment of bovine ${\alpha}_{s1}$-casein (f179-199). The hydroxyl radicals scavenging activity ($IC_{50}$ $28.25{\pm}0.96{\mu}M$) of the peptide chemically synthesized based on the MS/MS data showed a slightly lower than that of the natural antioxidant Trolox ($IC_{50}$ $15.37{\pm}0.52{\mu}M$). Furthermore, derivatives of the antioxidant peptide were synthesized. The antioxidative activity of the derivatives whose all three proline residues replaced by alanine significantly decreased, whereas replacement of two proline residues in N-terminal region did not affect its antioxidative activity, indicating that $3^{rd}$ proline in C-terminal region is critical for the antioxidative activity of the peptide identified in this study. In addition, N-terminal region of the antioxidant peptide did not show its activity, whereas C-terminal region maintained antioxidative activity, suggesting that C-terminal region of the peptide is important for antioxidative activity.

Edible Culture Media from Cereals and Soybeans for Pre-cultivation of Lactic Acid Bacteria (곡류 및 두류를 이용한 젖산균 전배양용 식용 배지의 제조)

  • Park, So-Lim;Park, Sunhyun;Jang, Jieun;Yang, Hye-Jung;Moon, Sung-Won;Lee, Myung-Ki
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.6
    • /
    • pp.991-995
    • /
    • 2013
  • This study was conducted to develop an edible culture media with various types of cereals and soybeans for the pre-cultivation of lactic acid bacteria (LAB). To manufacture the edible culture media, LAB enrichment media were prepared using cereals such as brown rice (including germinated brown rice, glutinous brown rice, and germinated glutinous brown rice), yellow soybeans (including yellow soybeans, hulled yellow soybeans, germinated yellow soybeans, hulled and germinated yellow soybeans), and black soybeans (black soybeans, hulled black soybeans, germinated black soybeans, hulled and germinated black soybeans). Seven species of LAB were used in the experiment: Lactobacillus (Lb.) farciminis, Lb. homohiochii, Lb. pentosus, Lb. plantarum, Leuconostoc (Leu.) paramesenteroides, Leu. citreum, and Leu. lactis. For edible culture media from cereals, the average viable cell count of the seven starter cultures was 7.6~8.0 log CFU/mL, while that of the MRS culture medium, a synthetic medium, was 9.2 log CFU/mL; thus proliferation was lower by about 1~2 log CFU/mL in starter cultures from cereals compared to the synthetic medium. In the case of the edible culture media from soybeans, most bacteria showed higher proliferation in the hulled and germinated soybean media. In particular, Lb. plantarum showed the highest cell count at 10.08 log CFU/mL. In the case of edible culture media from black soybeans, the proliferation rate was higher in the hulled and germinated black soybean medium. Lb. homohiochii showed the highest proliferation in the hulled and germinated black soybean medium at 9.90 log CFU/mL. All results show that edible culture media using cereals and soybeans are generally good for LAB. Especially, hulled and germinated black soybeans are optimal for the pre-cultivation of LAB medium.

Characteristics and Immunomodulating Activity of Lactic Acid Bacteria for the Potential Probiotics (Probiotics로서의 젖산균주의 특성 및 면역활성)

  • Seo, Jae-Hoon;Lee, Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.681-687
    • /
    • 2007
  • This study was designed to examine the suitable characteristics of potential probiotic bacteria. Possible probiotic bacteria, including Lactobacillus acidophilus DDS-1, Lb. acidophilus B-3208, Bifidobacterium bifidum KCTC 3357, Lb. plantarum, Leuconostoc mesenteroides ssp. mesenteroides ATCC 8293, and Lactococcus lactis ssp. lactis ATCC 7962 were selected. We then measured their acid and bile tolerances, adhesion properties in the gastrointestinal tract, antimicrobial activity against pathogenic bacteria, and immunomodulation activity. The acid tolerances of Lb. acidophilus DDS-1, Lb. acidophilus B-3208, Lb. plantarum, and Leu. mesenteroides ssp. mesenteroides ATCC 8293, in PBS (pH 2.5) for 2 hr, were high enough that 50% of the inocula survived. The bile tolerances of all bacteria, except Lc. lactis ssp. lactis ATCC 7962, were also observed at a 3% oxgall concentration in MRS broth. The results of the adhesion property assay showed that the total binding affinities of Lb. acidophilus DDS-1, Lb. acidophilus B-3208, and B. bifidum were about three times higher than those of the other bacteria. In testing their antimicrobial activities against pathogens, Lb. acidophilus B-3208, B. bifidum KCTC 3357, and Lb. plantarum inhibited the growth of pathogenic bacteria. For their immunomodulation activity, the cell wall fractions from Lb. acidophilus DDS-1 and Lb. acidophilus B-3208 showed the highest bone marrow cell proliferation activities. However, the cell wall fractions of Lb. acidophilus DDS-1 and B. bifidum, and the cytosol fraction of Lc. lactis ssp. lactis ATCC 7962 showed higher macrophage stimulation activities than those of the other bacteria. Since Lb. acidophilus DDS-1 and Lb. acidophilus B-3208 satisfy the requirements for probiotics, they can be considered suitable probiotic bacteria.

Bioconversion of nitrogen oxides and reduction of ferric ions by probiotic lactic acid bacteria (프로바이오틱스 유산균에 의한 질소 산화물 전환 및 철 이온 환원활성)

  • Kim, Selim;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.785-791
    • /
    • 2021
  • Many lactic acid bacteria (LAB) have probiotic properties that exert various health benefits. In this study, the reduction potential of nitrogen oxide compounds and ferric ions by six LAB, including Lactobacillus kimchicus, L. lactis, L. casei, L. plantarum, L. rhamnosus GG, and Leuconostoc mesenteroides were evaluated. The L. kimchicus strain produced a substantial amount of nitrite reduced from nitrate added to the media, whereas the other five LAB strains did not. L. kimchicus also showed the most potent reducing activity of ferric to ferrous ions. However, the reduction potential of the autoclaved L. kimchicus was little pronounced. The scavenging activities of viable LAB or their cell lysates against different radicals were not consistent with the potency of the LAB's reducing ability. The present results indicate that L. kimchicus has a strong reduction potential for nitrogen oxides in viable status, and that this ability can be used as a probiotic property for various health benefits.