Use of the Cellulase Gene as a Selection Marker of Food-grade Integration System in Lactic Acid Bacteria

  • Lee, Jung-Min (Department of Agricultural Biotechnology, Seoul National University) ;
  • Jeong, Do-Won (Center for Food and Drug Analysis, Gyeongin Regional Food & Drug Administration) ;
  • Lee, Jong-Hoon (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Chung, Dae-Kyun (School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Lee, Hyong-Joo (Department of Agricultural Biotechnology, Seoul National University)
  • Published : 2008.12.31

Abstract

The application of the cellulase gene (celA) as a selection marker of food-grade integration system was investigated in Lactobacillus (Lb.) casei, Lactococcus lactis, and Leuconostoc (Leu.) mesenteroides. The 6.0-kb vector pOC13 containing celA from Clostridium thermocellum with an integrase gene and a phage attachment site originating from bacteriophage A2 was used for site-specific recombination into chromosomal DNA of lactic acid bacteria (LAB). pOC13 was also equipped with a broad host range plus replication origin from the lactococcal plasmid pWV01, and a controllable promoter of nisA ($P_{nisA}$) for the production of foreign proteins. pOC13 was integrated successfully into Lb. casei EM116, and pOC13 integrants were easily detectable by the formation of halo zone on plates containing cellulose. Recombinant Lb. casei EM 116::pOC13 maintained these traits in the absence of selection pressure during 100 generations. pOC13 was integrated into the chromosome of L. lactis and Leu. mesenteroides, and celA acted as an efficient selection marker. These results show that celA can be used as a food-grade selection marker, and that the new integrative vector could be used for the production of foreign proteins in LAB.

Keywords

References

  1. Ahmed FE. Genetically modified probiotics in foods. Trends Biotechnol. 21: 491-497 (2003) https://doi.org/10.1016/j.tibtech.2003.09.006
  2. De Vrese M, Stegelmann A, Richter B, Fenselau S, Laue C, Schrezenmeir J. Probiotics-compensation for lactase insufficiency. Am. J. Clin. Nutr. 73: 421S-429S (2001) https://doi.org/10.1093/ajcn/73.2.421s
  3. Kim JY, Lee S, Hachimura S, Kaminogawa S, Lee HJ. In vitro immunopotentiating activity of cellular components of Lactococcus lactis ssp. lactis. J. Microbiol. Biotechn.13: 202-206 (2003)
  4. Kim JY, Lee S, Jeong D-W, Hachimura S, Kaminogawa S, Lee HJ. Effects of intraperitoneal administration of Lactococcus lactis ssp. lactis cellular fraction on immune response. Food Sci. Biotechnol. 14: 405-409 (2005)
  5. Kim JY, Lee S, Jeong D-W, Hachimura S, Kaminogawa S, Lee HJ. In vivo immunopotentiating effects of cellular components from Lactococcus lactis ssp. lactis. J. Microbiol. Biotechn. 16: 786-790 (2006)
  6. Miyoshi A, Rochat T, Gratadoux JJ, Le Loir Y, Oliveira SC, Langella P, Azevedo V. Oxidative stress in Lactococcus lactis. Genet. Mol. Res. 2: 348-359 (2003)
  7. De Vos WM, Hugenholtz J. Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends Biotechnol. 22: 72-79 (2004) https://doi.org/10.1016/j.tibtech.2003.11.011
  8. Jeong D-W, Lee JH, Kim KH, Lee HJ. A food-grade expression/secretion vector for Lactococcus lactis that uses an alpha-galactosidase gene as a selection marker. Food Microbiol. 23: 468-475 (2006) https://doi.org/10.1016/j.fm.2005.06.003
  9. Bron PA, Benchimol MG, Lambert J, Palumbo E, Deghorain M, Delcour J, De Vos WM, Kleerebezem M, Hols P. Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Appl. Environ. Microb. 68: 5663-5670 (2002) https://doi.org/10.1128/AEM.68.11.5663-5670.2002
  10. Jeong D-W, Hwang ES, Lee HJ. Food-grade expression and secretion system in Lactococcus. Food Sci. Biotechnol. 15: 485-493 (2006)
  11. Posno M, Heuvelmans PT, van Giezen MJ, Lokman BC, Leer RJ, Pouwels PH. Complementation of the inability of Lactobacillus strains to utilize D-xylose with D-xylose catabolism-encoding genes of Lactobacillus pentosus. Appl. Environ. Microb. 57: 2764-2766 (1991)
  12. Froseth BR, McKay LL. Molecular characterization of the nisin resistance region of Lactococcus lactis subsp. lactis biovar diacetylactis DRC3. Appl. Environ. Microb. 57: 804-811 (1991)
  13. Liu CQ, Leelawatcharamas V, Harvey ML, Dunn NW. Cloning vectors for lactococci based on a plasmid encoding resistance to cadmium. Curr. Microbiol. 33: 35-39 (1996) https://doi.org/10.1007/s002849900070
  14. Takala TM, Saris PE. A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Appl. Microbiol. Biotechnol. 59: 467-471 (2002) https://doi.org/10.1007/s00253-002-1034-4
  15. Gosalbes MJ, Esteban CD, Galan JL, Perez-Martinez G. Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl. Environ. Microb. 66: 4822-4828 (2000) https://doi.org/10.1128/AEM.66.11.4822-4828.2000
  16. Takala TM, Saris PE, Tynkkynen SS. Food-grade host/vector expression system for Lactobacillus casei based on complementation of plasmid-associated phospho-beta-galactosidase gene lacG. Appl. Microbiol. Biotechnol. 60: 564-570 (2003) https://doi.org/10.1007/s00253-002-1153-y
  17. McKay LL. Functional properties of plasmids in lactic streptococci. Anton. Leeuw. Int. J. G. 49: 259-274 (1983) https://doi.org/10.1007/BF00399502
  18. Henrich B, Klein JR, Weber B, Delorme C, Renault P, Wegmann U. Food-grade delivery system for controlled gene expression in Lactococcus lactis. Appl. Environ. Microb. 68: 5429-5436 (2002) https://doi.org/10.1128/AEM.68.11.5429-5436.2002
  19. Leenhouts K, Bolhuis A, Boot J, Deutz I, Toonen M, Venema G, Kok J, Ledeboer A. Cloning, expression, and chromosomal stabilization of the Propionibacterium shermanii proline iminopeptidase gene (pip) for food-grade application in Lactococcus lactis. Appl. Environ. Microb. 64: 4736-4742 (1998)
  20. Simoes-Barbosa A, Abreu H, Silva Neto A, Gruss A, Langella P. A food-grade delivery system for Lactococcus lactis and evaluation of inducible gene expression. Appl. Microbiol. Biotechnol. 65: 61-67 (2004)
  21. Chopin MC, Chopin A, Rouault A, Galleron N. Insertion and amplification of foreign genes in the Lactococcus lactis subsp. lactis chromosome. Appl. Environ. Microb. 55: 1769-1774 (1989)
  22. Leenhouts KJ, Kok J, Venema G. Campbell-like integration of heterologous plasmid DNA into the chromosome of Lactococcus lactis subsp. lactis. Appl. Environ. Microb. 55: 394-400 (1989)
  23. Romero DA, Klaenhammer TR. IS946-mediated integration of heterologous DNA into the genome of Lactococcus lactis subsp. lactis. Appl. Environ. Microb. 58: 699-702 (1992)
  24. Alvarez MA, Herrero M, Suarez JE. The site-specific recombination system of the Lactobacillus species bacteriophage A2 integrates in Gram-positive and Gram-negative bacteria. Virology 250: 185-193 (1998) https://doi.org/10.1006/viro.1998.9353
  25. Atlung T, Nielsen A, Rasmussen LJ, Nellemann LJ, Holm F. A versatile method for integration of genes and gene fusions into the lambda attachment site of Escherichia coli. Gene 107: 11-17 (1991) https://doi.org/10.1016/0378-1119(91)90291-I
  26. Lillehaug D, Nes IF, Birkeland NK. A highly efficient and stable system for site-specific integration of genes and plasmids into the phage phiLC3 attachment site (attB) of the Lactococcus lactis chromosome. Gene 188: 129-136 (1997) https://doi.org/10.1016/S0378-1119(96)00798-6
  27. Beguin P, Cornet P, Aubert JP. Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. J. Bacteriol. 162: 102-105 (1985)
  28. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580 (1983) https://doi.org/10.1016/S0022-2836(83)80284-8
  29. Holo H, Nes IF. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microb. 55: 3119-3123 (1989)
  30. De Ruyter PG, Kuipers OP, De Vos WM. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl. Environ. Microb. 62: 3662-3667 (1996)
  31. Martin MC, Alonso JC, Suarez JE, Alvarez MA. Generation of food-grade recombinant lactic acid bacterium strains by site-specific recombination. Appl. Environ. Microb. 66: 2599-2604 (2000) https://doi.org/10.1128/AEM.66.6.2599-2604.2000
  32. Jeong D-W, Choi YC, Lee JM, Kim JH, Lee JH, Kim KH, Lee HJ. Isolation and characterization of promoters from Lactococcus lactis ssp. cremoris LM0230. Food Microbiol. 23: 82-89 (2006) https://doi.org/10.1016/j.fm.2005.01.006
  33. Roberts RC, Burioni R, Helinski DR. Genetic characterization of the stabilizing functions of a region of broad-host range plasmid RK2. J. Bacteriol. 172: 6204-6216 (1990) https://doi.org/10.1128/jb.172.11.6204-6216.1990
  34. Leenhouts KJ, Tolner B, Bron S, Kok J, Venema G, Seegers JF. Nucleotide sequence and characterization of the broad-host-range lactococcal plasmid pWV01. Plasmid 26: 55-66 (1991) https://doi.org/10.1016/0147-619X(91)90036-V
  35. Law J, Buist G, Haandrikman A, Kok J, Venema G, Leenhouts K. A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. J. Bacteriol. 177: 7011-7018 (1995) https://doi.org/10.1128/jb.177.24.7011-7018.1995
  36. Kuipers OP, Beerthuyzen MM, Siezen RJ, De Vos WM. Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur. J. Biochem. 216: 281-291 (1993) https://doi.org/10.1111/j.1432-1033.1993.tb18143.x
  37. Kim TW, Lee JY, Jung SH, Kim YM, Jo JS, Chung DK, Lee HJ, Kim HY. Identification of lactic acid bacteria in kimchi using SDS-PAGE profiles of whole cell proteins. J. Microbiol. Biotechn.12: 635-642 (2002)