Browse > Article

Use of the Cellulase Gene as a Selection Marker of Food-grade Integration System in Lactic Acid Bacteria  

Lee, Jung-Min (Department of Agricultural Biotechnology, Seoul National University)
Jeong, Do-Won (Center for Food and Drug Analysis, Gyeongin Regional Food & Drug Administration)
Lee, Jong-Hoon (Department of Food Science and Biotechnology, Kyonggi University)
Chung, Dae-Kyun (School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University)
Lee, Hyong-Joo (Department of Agricultural Biotechnology, Seoul National University)
Publication Information
Food Science and Biotechnology / v.17, no.6, 2008 , pp. 1221-1227 More about this Journal
Abstract
The application of the cellulase gene (celA) as a selection marker of food-grade integration system was investigated in Lactobacillus (Lb.) casei, Lactococcus lactis, and Leuconostoc (Leu.) mesenteroides. The 6.0-kb vector pOC13 containing celA from Clostridium thermocellum with an integrase gene and a phage attachment site originating from bacteriophage A2 was used for site-specific recombination into chromosomal DNA of lactic acid bacteria (LAB). pOC13 was also equipped with a broad host range plus replication origin from the lactococcal plasmid pWV01, and a controllable promoter of nisA ($P_{nisA}$) for the production of foreign proteins. pOC13 was integrated successfully into Lb. casei EM116, and pOC13 integrants were easily detectable by the formation of halo zone on plates containing cellulose. Recombinant Lb. casei EM 116::pOC13 maintained these traits in the absence of selection pressure during 100 generations. pOC13 was integrated into the chromosome of L. lactis and Leu. mesenteroides, and celA acted as an efficient selection marker. These results show that celA can be used as a food-grade selection marker, and that the new integrative vector could be used for the production of foreign proteins in LAB.
Keywords
integration vector; cellulase; lactic acid bacteria; Lactobacillus casei; Lactococcus lactis; Leuconostoc mesenteroides; site-specific recombination;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Ahmed FE. Genetically modified probiotics in foods. Trends Biotechnol. 21: 491-497 (2003)   DOI   ScienceOn
2 De Vrese M, Stegelmann A, Richter B, Fenselau S, Laue C, Schrezenmeir J. Probiotics-compensation for lactase insufficiency. Am. J. Clin. Nutr. 73: 421S-429S (2001)   DOI
3 Kim JY, Lee S, Jeong D-W, Hachimura S, Kaminogawa S, Lee HJ. In vivo immunopotentiating effects of cellular components from Lactococcus lactis ssp. lactis. J. Microbiol. Biotechn. 16: 786-790 (2006)   과학기술학회마을
4 Posno M, Heuvelmans PT, van Giezen MJ, Lokman BC, Leer RJ, Pouwels PH. Complementation of the inability of Lactobacillus strains to utilize D-xylose with D-xylose catabolism-encoding genes of Lactobacillus pentosus. Appl. Environ. Microb. 57: 2764-2766 (1991)
5 Froseth BR, McKay LL. Molecular characterization of the nisin resistance region of Lactococcus lactis subsp. lactis biovar diacetylactis DRC3. Appl. Environ. Microb. 57: 804-811 (1991)
6 Takala TM, Saris PE, Tynkkynen SS. Food-grade host/vector expression system for Lactobacillus casei based on complementation of plasmid-associated phospho-beta-galactosidase gene lacG. Appl. Microbiol. Biotechnol. 60: 564-570 (2003)   DOI
7 McKay LL. Functional properties of plasmids in lactic streptococci. Anton. Leeuw. Int. J. G. 49: 259-274 (1983)   DOI   ScienceOn
8 Romero DA, Klaenhammer TR. IS946-mediated integration of heterologous DNA into the genome of Lactococcus lactis subsp. lactis. Appl. Environ. Microb. 58: 699-702 (1992)
9 Leenhouts KJ, Tolner B, Bron S, Kok J, Venema G, Seegers JF. Nucleotide sequence and characterization of the broad-host-range lactococcal plasmid pWV01. Plasmid 26: 55-66 (1991)   DOI   ScienceOn
10 Law J, Buist G, Haandrikman A, Kok J, Venema G, Leenhouts K. A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. J. Bacteriol. 177: 7011-7018 (1995)   DOI
11 De Ruyter PG, Kuipers OP, De Vos WM. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl. Environ. Microb. 62: 3662-3667 (1996)
12 Gosalbes MJ, Esteban CD, Galan JL, Perez-Martinez G. Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl. Environ. Microb. 66: 4822-4828 (2000)   DOI   ScienceOn
13 Alvarez MA, Herrero M, Suarez JE. The site-specific recombination system of the Lactobacillus species bacteriophage A2 integrates in Gram-positive and Gram-negative bacteria. Virology 250: 185-193 (1998)   DOI   ScienceOn
14 Atlung T, Nielsen A, Rasmussen LJ, Nellemann LJ, Holm F. A versatile method for integration of genes and gene fusions into the lambda attachment site of Escherichia coli. Gene 107: 11-17 (1991)   DOI   ScienceOn
15 Beguin P, Cornet P, Aubert JP. Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. J. Bacteriol. 162: 102-105 (1985)
16 Roberts RC, Burioni R, Helinski DR. Genetic characterization of the stabilizing functions of a region of broad-host range plasmid RK2. J. Bacteriol. 172: 6204-6216 (1990)   DOI
17 Liu CQ, Leelawatcharamas V, Harvey ML, Dunn NW. Cloning vectors for lactococci based on a plasmid encoding resistance to cadmium. Curr. Microbiol. 33: 35-39 (1996)   DOI   ScienceOn
18 Lillehaug D, Nes IF, Birkeland NK. A highly efficient and stable system for site-specific integration of genes and plasmids into the phage phiLC3 attachment site (attB) of the Lactococcus lactis chromosome. Gene 188: 129-136 (1997)   DOI   ScienceOn
19 Kim JY, Lee S, Hachimura S, Kaminogawa S, Lee HJ. In vitro immunopotentiating activity of cellular components of Lactococcus lactis ssp. lactis. J. Microbiol. Biotechn.13: 202-206 (2003)
20 Kim TW, Lee JY, Jung SH, Kim YM, Jo JS, Chung DK, Lee HJ, Kim HY. Identification of lactic acid bacteria in kimchi using SDS-PAGE profiles of whole cell proteins. J. Microbiol. Biotechn.12: 635-642 (2002)
21 Holo H, Nes IF. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microb. 55: 3119-3123 (1989)
22 Chopin MC, Chopin A, Rouault A, Galleron N. Insertion and amplification of foreign genes in the Lactococcus lactis subsp. lactis chromosome. Appl. Environ. Microb. 55: 1769-1774 (1989)
23 Martin MC, Alonso JC, Suarez JE, Alvarez MA. Generation of food-grade recombinant lactic acid bacterium strains by site-specific recombination. Appl. Environ. Microb. 66: 2599-2604 (2000)   DOI   ScienceOn
24 Miyoshi A, Rochat T, Gratadoux JJ, Le Loir Y, Oliveira SC, Langella P, Azevedo V. Oxidative stress in Lactococcus lactis. Genet. Mol. Res. 2: 348-359 (2003)
25 Leenhouts K, Bolhuis A, Boot J, Deutz I, Toonen M, Venema G, Kok J, Ledeboer A. Cloning, expression, and chromosomal stabilization of the Propionibacterium shermanii proline iminopeptidase gene (pip) for food-grade application in Lactococcus lactis. Appl. Environ. Microb. 64: 4736-4742 (1998)
26 Kuipers OP, Beerthuyzen MM, Siezen RJ, De Vos WM. Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur. J. Biochem. 216: 281-291 (1993)   DOI   ScienceOn
27 Jeong D-W, Hwang ES, Lee HJ. Food-grade expression and secretion system in Lactococcus. Food Sci. Biotechnol. 15: 485-493 (2006)   과학기술학회마을
28 Hanahan D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580 (1983)   DOI
29 Leenhouts KJ, Kok J, Venema G. Campbell-like integration of heterologous plasmid DNA into the chromosome of Lactococcus lactis subsp. lactis. Appl. Environ. Microb. 55: 394-400 (1989)
30 Kim JY, Lee S, Jeong D-W, Hachimura S, Kaminogawa S, Lee HJ. Effects of intraperitoneal administration of Lactococcus lactis ssp. lactis cellular fraction on immune response. Food Sci. Biotechnol. 14: 405-409 (2005)
31 Jeong D-W, Lee JH, Kim KH, Lee HJ. A food-grade expression/secretion vector for Lactococcus lactis that uses an alpha-galactosidase gene as a selection marker. Food Microbiol. 23: 468-475 (2006)   DOI   ScienceOn
32 Henrich B, Klein JR, Weber B, Delorme C, Renault P, Wegmann U. Food-grade delivery system for controlled gene expression in Lactococcus lactis. Appl. Environ. Microb. 68: 5429-5436 (2002)   DOI   ScienceOn
33 Simoes-Barbosa A, Abreu H, Silva Neto A, Gruss A, Langella P. A food-grade delivery system for Lactococcus lactis and evaluation of inducible gene expression. Appl. Microbiol. Biotechnol. 65: 61-67 (2004)
34 Bron PA, Benchimol MG, Lambert J, Palumbo E, Deghorain M, Delcour J, De Vos WM, Kleerebezem M, Hols P. Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Appl. Environ. Microb. 68: 5663-5670 (2002)   DOI   ScienceOn
35 Takala TM, Saris PE. A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Appl. Microbiol. Biotechnol. 59: 467-471 (2002)   DOI   ScienceOn
36 Jeong D-W, Choi YC, Lee JM, Kim JH, Lee JH, Kim KH, Lee HJ. Isolation and characterization of promoters from Lactococcus lactis ssp. cremoris LM0230. Food Microbiol. 23: 82-89 (2006)   DOI   ScienceOn
37 De Vos WM, Hugenholtz J. Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends Biotechnol. 22: 72-79 (2004)   DOI   ScienceOn