DOI QR코드

DOI QR Code

Identification and Characterization of a Novel Antioxidant Peptide from Bovine Skim Milk Fermented by Lactococcus lactis SL6

  • Kim, Sang Hoon (Department of Animal Resource Science, Dankook University) ;
  • Lee, Ji Yoon (National Instrumentation Center for Environmental Management, Seoul National University) ;
  • Balolong, Marilen P. (Department of Animal Resource Science, Dankook University) ;
  • Kim, Jin-Eung (R&D Center, Cell Biotech Co., Ltd.) ;
  • Paik, Hyun-Dong (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Kang, Dae-Kyung (Department of Animal Resource Science, Dankook University)
  • Received : 2017.03.17
  • Accepted : 2017.05.27
  • Published : 2017.06.30

Abstract

A novel peptide having free radical scavenging activity was separated, using an on-line high-performance liquid chromatography (HPLC) - ABTS screening method, from bovine skim milk fermented by Lactococcus lactis SL6 (KCTC 11865BP). It was further purified using reverse phase-HPLC (RP-HPLC) and sequenced by RP-HPLC-tandem mass spectrometry. The amino acid sequence of the identified peptide was determined to be Phe-Ser-Asp-Ile-Pro-Asn-Pro-Ile-Gly-Ser-Glu-Asn-Ser-Glu-Lys-Thr-Thr-Met-Pro-Leu-Trp (2,362 Da), which is corresponding to the C-terminal fragment of bovine ${\alpha}_{s1}$-casein (f179-199). The hydroxyl radicals scavenging activity ($IC_{50}$ $28.25{\pm}0.96{\mu}M$) of the peptide chemically synthesized based on the MS/MS data showed a slightly lower than that of the natural antioxidant Trolox ($IC_{50}$ $15.37{\pm}0.52{\mu}M$). Furthermore, derivatives of the antioxidant peptide were synthesized. The antioxidative activity of the derivatives whose all three proline residues replaced by alanine significantly decreased, whereas replacement of two proline residues in N-terminal region did not affect its antioxidative activity, indicating that $3^{rd}$ proline in C-terminal region is critical for the antioxidative activity of the peptide identified in this study. In addition, N-terminal region of the antioxidant peptide did not show its activity, whereas C-terminal region maintained antioxidative activity, suggesting that C-terminal region of the peptide is important for antioxidative activity.

Keywords

References

  1. Chang, O. K., Seol, K.-H., Jeong, S.-G., Oh, M.-H., Park, B.-Y., Perrin, C., and Ham, J,-S. (2013) Casein hydrolysis by Bifidobacterium longum KACC91563 and antioxidant activities of peptides derived therefrom. J. Dairy Sci. 96, 5544-5555. https://doi.org/10.3168/jds.2013-6687
  2. Chen, H.-M., Muramoto, K., Yamauchi, F., Fujimoto, K., and Nokihara, K. (1998) Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J. Agric. Food Chem. 46, 49-53. https://doi.org/10.1021/jf970649w
  3. Cheung, H. S., Wang, F. L., Ondetti, M. A., Sabo, E. F., and Cushman, D. W. (1980) Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J. Biol. Chem. 255, 401-407.
  4. Christensen, J. E., Dudley, E. G., Pederson, J. A., and Steele, J. L. (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Leeuwenhoek 76, 217-246. https://doi.org/10.1023/A:1002001919720
  5. Clare, D. A., Catignani, G. L., and Swaisgood, H. E. (2003) Biodefense properties of milk: The role of antimicrobial proteins and peptides. Curr. Pharm. Des. 9, 1239-1255. https://doi.org/10.2174/1381612033454874
  6. Damgaard, T. D., Otte, J. A. H., Meinert, L., Jensen, K., and Lametsch, R. (2014) Antioxidant capacity of hydrolyzed porcine tissues. Food Sci. Nutr. 2, 282-288. https://doi.org/10.1002/fsn3.106
  7. De Gobba, C., Espejo-Carpio, F., Skibsted, L., and Otte, J. (2014) Antioxidant peptides from goat milk protein fractions hydrolysed by two commercial proteases. Int. Dairy J. 39, 28-40. https://doi.org/10.1016/j.idairyj.2014.03.015
  8. Fabin, K. H. S., Baron, C. P., Nielsen, N. S., Otte, J., and Jacobsen, C. (2010) Antioxidant activity of yoghurt peptides: Part 2 - Characterisation of peptide fractions. Food Chem. 123, 1090-1097. https://doi.org/10.1016/j.foodchem.2010.05.029
  9. FitzGerald, R. J. and Meisel, H. (2003) Milk protein hydrolysates and bioactive peptides. In: Advances in Dairy Chemistry. Fox, P. F. and Mc Sweeney, P. L. H. 3rd ed, Kluwer Academic/Plenum Publishers, NY, pp. 675-698.
  10. Gobbetti, M., Minervini, F., and Rizzello, C. G. (2007) Bioactive peptides in dairy products. In: Handbook of food products manufacturing. Y. H. Hui, ed, John Wiley & Sons, Inc. 489-517.
  11. Gomez-Ruiz, J. A., Lopez-Exposito, I., Pihlanto, A., Ramos, M., and Recio, I. (2008) Antioxidant activity of ovine casein hydrolysates: Identification of active peptides by HPLC-MS/MS. Eur. Food Res. Technol. 227, 1061-1067. https://doi.org/10.1007/s00217-008-0820-3
  12. Gupta, A., Mann, B., Kumar, R., and Sangwan, R. B. (2009) Antioxidant activity of Cheddar cheeses at different stages of ripening. Int. J. Dairy Technol. 62, 339-347. https://doi.org/10.1111/j.1471-0307.2009.00509.x
  13. Ha, G. E., Chang, O. K., Jo, S. M., Han, G.-S., Park, B.-Y., Ham, J.-S., and Jeong, S.-G. (2015) Identification of antihypertensive peptides derived from low molecular weight casein hydrolysates generated during fermentation by Bifidobacterium longum KACC 91563. Korean J. Food Sci. An. 35, 738-747. https://doi.org/10.5851/kosfa.2015.35.6.738
  14. Halliwell, B. (2001) Role of free radicals in the neurodegenerative diseases: Therapeutic implications for antioxidant treatment. Drugs Aging 18, 685-716. https://doi.org/10.2165/00002512-200118090-00004
  15. Hernandez-Ledesma, B., Miralles, B., Amigo, L., Ramos, M., and Recio, I. (2005) Identification of antioxidant and ACE-inhibitory peptides in fermented milk. J. Sci. Food Agric. 85, 1041-1048. https://doi.org/10.1002/jsfa.2063
  16. Hoelzl, C., Bichler, J., Ferk, F., Simic, T., Nersesyan, A., Elbling, L., Ehrlich, V., Chakraborty, A., and Knasmuller, S. (2005) Methods for the detection of antioxidants which prevent age related diseases: A critical review with particular emphasis on human intervention studies. J. Physiol. Pharmacol. 56, 49-64.
  17. Kitts, D. D. and Weiler, K. (2003) Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Des. 9, 1309-1323. https://doi.org/10.2174/1381612033454883
  18. Korhonen, H. and Pihlanto-Leppala, A. (2004) Milk-derived bioactive peptides: Formation and prospects for health promotion. In: Handbook of functional dairy products. Shortt, C. and O'Brien, J. ed, CRC Press, Boca Raton, F. L., USA. pp. 109-124.
  19. Korhonen, H. and Pihlanto-Leppala, A. (2007) Bioactive peptides from food proteins. In: Handbook of food products manufacturing. Hui, Y. H. ed, John Wiley & Sons, Inc., pp. 5-37.
  20. Kudoh, Y., Matsuda, S., Igoshi, K., and Oki, T. (2001) Antioxidative peptide from milk fermented with Lactobacillus delbrueckii subsp. bulgaricus IFO13953. J. Jpn. Soc. Food Sci. 48, 44-50. https://doi.org/10.3136/nskkk.48.44
  21. Li, G., Le, G., Shi, Y., and Shrestha, S. (2004) Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr. Res. 24, 469-486. https://doi.org/10.1016/S0271-5317(04)00058-2
  22. Lopez-Exposito, I., Minervini, F., Amigo, L., and Recio, I. (2006) Identification of antibacterial peptides from bovine kappa-casein. J. Food Prot. 69, 2992-2997. https://doi.org/10.4315/0362-028X-69.12.2992
  23. Meisel, H. (1997) Biochemical properties of regulatory peptides derived from milk proteins. Biopolymers 43, 119-128. https://doi.org/10.1002/(SICI)1097-0282(1997)43:2<119::AID-BIP4>3.0.CO;2-Y
  24. Migliore-Samour, D., Floc'h, F., and Jolles, P. (1989) Biologically active casein peptides implicated in immunomodulation. J. Dairy Res. 56, 357-362. https://doi.org/10.1017/S0022029900028806
  25. Nongonierma, A. B. and Fitzgerald, R. J. (2013) Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk protein-derived dipeptides and hydrolysates. Peptides 39, 157-163. https://doi.org/10.1016/j.peptides.2012.11.016
  26. Ono, S., Hosokawa, M., Miyashita, K., and Takahashi, K. (2005) Inhibition properties of dipeptides from salmon muscle hydrolysate on angiotensin I-converting enzyme. Int. J. Food Sci. Technol. 41, 383-386.
  27. Park, Y. W. (2009) Overview of bioactive components in milk and dairy products. In: Bioactive components in milk and dairy products. Park, Y. W. ed, Wiley-Blackwell Publishers, Ames, Iowa and Oxford, England. pp. 3-14.
  28. Park, Y. W., Juarez, M., Ramos, M., and Haenlein, G. F. W. (2007) Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 68, 88-113. https://doi.org/10.1016/j.smallrumres.2006.09.013
  29. Pihlanto-Leppala, A., Rokka, T., and Korhonen, H. (1998) Angiotensin I converting enzyme inhibitory peptides derived from bovine milk proteins. Int. Dairy J. 8, 325-331. https://doi.org/10.1016/S0958-6946(98)00048-X
  30. Power, O., Jakeman, P. and FitzGerald, R. J. (2012) Antioxidative peptides: Enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids 1-24.
  31. Rival, S. G., Boeriu, C. G., and Wichers, H. J. (2001) Caseins and casein hydrolysates. 2. Antioxidative properties and relevance to lipoxygenase inhibition. J. Agric. Food Chem. 49, 295-302. https://doi.org/10.1021/jf0003911
  32. Sarmadi, B. H. and Ismail, A. (2010) Antioxidative peptides from food proteins: A review. Peptides 31, 1949-1956. https://doi.org/10.1016/j.peptides.2010.06.020
  33. Suetsuna, K. and Chen, J.-R. (2002) Studies on biologically active peptide derived from fish and shellfish-V antioxidant activities from Undaria pinnatifida dipeptides derivatives. J. Natl. Fish. Univ. 51, 1-5.
  34. Williamson, M. P. (1994) The structure and function of proline-rich regions in proteins. Biochem. J. 15, 249-260.

Cited by

  1. Skimmed milk fermented by lactic acid bacteria inhibits adipogenesis in 3T3-L1 pre-adipocytes by downregulating PPARγ via TNF-α induction in vitro vol.12, pp.18, 2021, https://doi.org/10.1039/d1fo00076d