• Title/Summary/Keyword: Lens combination

Search Result 79, Processing Time 0.026 seconds

An Optimal Combination of Illumination Intensity and Lens Aperture for Color Image Analysis

  • Chang, Y. C.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.35-43
    • /
    • 2002
  • The spectral color resolution of an image is very important in color image analysis. Two factors influencing the spectral color resolution of an image are illumination intensity and lens aperture for a selected vision system. An optimal combination of illumination intensity and lens aperture for color image analysis was determined in the study. The method was based on a model of dynamic range defined as the absolute difference between digital values of selected foreground and background color in the image. The role of illumination intensity in machine vision was also described and a computer program for simulating the optimal combination of two factors was implemented for verifying the related algorithm. It was possible to estimate the non-saturating range of the illumination intensity (input voltage in the study) and the lens aperture by using a model of dynamic range. The method provided an optimal combination of the illumination intensity and the lens aperture, maximizing the color resolution between colors of interest in color analysis, and the estimated color resolution at the combination for a given vision system configuration.

  • PDF

Aberration analysis of telephoto lens system by using thin lens approximation (얇은 렌즈 근사를 이용한 Telephoto Lens계의 수차해석)

  • 문준석;이종웅;박성찬
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.275-282
    • /
    • 2002
  • We derived analytic formulae for the correction of spherical aberration, coma, and axial color of a two-components lens system consisted of a cemented doublet and a singlet by using the thin lens approximation. The correction formulae were applied to design a telephoto lens system. We examined two kinds of glass combinations in the design, one was crown-flint-crown combination and the other was flint-crown-flint combination. We found two kinds of achromatic aplanat solutions in the crown-flint-crown combination. For the case of flint-crown-flint combination, there were also two kinds of solutions, but their configurations are not useful in practice.

Design of a Condenser Lens System using a Thin Lens Combination (얇은 렌즈 조합을 이용한 집속 렌즈 시스템 설계)

  • Lim, Sun-Jong;Choi, Ji-Yeon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.517-522
    • /
    • 2011
  • Most of SEM is double condenser lens system. Two condenser lenses are required to provide the high demagnification ratios necessary for forming nanometer probes. The thin lens concept provides a highly useful basis for preliminary calculations in a broad range of situations. It is an easy way to understand the electron beam paths in column. Demagnification is easily calculated by this method. In this paper, we present design processes for condenser lens's demagnification by using thin lens combination model. Also, we verify the reliability of our design processes by comparing the modeled demagnification with these of corrected condenser lens.

DERIVATION OF THE GRAVITATIONAL MULTI-LENS EQUATION FROM THE LINEAR APPROXIMATION OF EINSTEIN FIELD EQUATION

  • KANG SANGJUN
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.75-80
    • /
    • 2003
  • When a bright astronomical object (source) is gravitationally lensed by a foreground mass (lens), its image appears to be located at different positions. The lens equation describes the relations between the locations of the lens, source, and images. The lens equation used for the description of the lensing behavior caused by a lens system composed of multiple masses has a form with a linear combination of the individual single lens equations. In this paper, we examine the validity of the linear nature of the multi-lens equation based on the general relativistic point of view.

The Actual Management State of Trial Contact Lenses and Lens Care Products in Local Optical Shops (안경원의 시험착용 콘택트렌즈 및 관리용품 관리 실태)

  • Park, Mijung;Lee, Unjung;Kim, So Ra
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.4
    • /
    • pp.391-401
    • /
    • 2011
  • Purpose: In the present study, the actual management state of trial contact lenses and lens care products in local optical shops was surveyed and analyzed to reduce the risk of lens complication possibly induced by neglecting lens care. Methods: The feeling of contact lens wearers during the wear of trial contact lenses was surveyed. Futhermore, the actual management state of trial contact lenses such as cosmetic lens and RGP lens and lens care products was also investigated by surveying opticians who trade contact lenses in local optical shops. Results: It was found that consumers trusted the sanitary conditions of the lens since trial cosmetic contact lens and RGP lens were cleaned before and after trails by over 98% of opticians in local optical shops. For trial cosmetic lens, cleaning with normal saline, multipurpose solution for soft lens and combination of saline and multipurpose solution were 38.5%, 40.5% and 21%, respectively, before trials. After trials, cosmetic lenses were cleaned with normal saline, multipurpose solution for soft lens and a combination of saline and multipurpose solution were 13%, 75%, and 12%, respectively. On the other hand, cleaning with normal saline, multipurpose solution for RGP lens and combination of saline and multipurpose solution were 28.5%, 38.5% and 33%, respectively, before trying trial RGP lens. After trials, RGP lenses were cleaned with normal saline, multipurpose solution for RGP lens and a combination of saline and multipurpose solution were 2.5%, 70%, and 27.5%, respectively, indicating that relatively many opticians followed the lens cleaning regimen. In local optical shops, the cleaning trial cosmetic lens was mainly conducted at every 10 days or a month and the washing cycle of cosmetic lens case was in a month or 2~3 months. The cleaning interval of trial RGP lens was primarily in a month or 2~3 months. For those lens cases, more than 75% of opticians washed them with a surfactant and then rinsed with cold water. The storing periods of lens care products were primarily in a week for saline and in a month and 2~3 months indicating that storing period of lens care products was relatively well-kept in local optical shops. Conclusions: It is thought that the concern about any microbial infection is not that high since trial contact lenses and lens care products were generally well-managed by opticians in local optical shops from the results above. However, better public eye health and better public confidence in opticians may be possible if further strengthen in avoidance of lens cleaning with saline, keep of cleaning cycles within 2 weeks and rinsing of lens cases with hot water happens.

Microlens Fabrication by Using Excimer Laser (엑사이머 레이저를 이용한 마이크로렌즈 제작)

  • 김철세;김재도;윤경구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.33-39
    • /
    • 2003
  • A new microlens fabrication technique, the excimer laser lithography is developed. This bases on the pulsed laser irradiation and the transfer of a chromium-on-quartz reticle on to the polymer surface with a proper projection optics system. An excimer laser lithography system with 1/4 and 1/20 demagnification ratios was constructed first, and the photoablation characteristics of the PMMA and Polyimide were experimentally examined using this system. For two different shapes of microlenses, a spherical lens and a cylindrical lens, fabrication techniques were investigated. One for the spherical lens is a combination of the mask pattern projection and fraction effect. The other for the cylindrical lens is a combination of the mask pattern projection and the relative movement of a specimen. The result shows that various shapes of micro optical components can be easily fabricated by the excimer laser lithography.

Electromagnetic Analysis on the VCM for Auto-focus Lens (자동초점 조절용 VCM의 전자기 해석 연구)

  • Kwon, Soon Ki
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.331-335
    • /
    • 2012
  • Many researches have been performed the analysis and experiments on auto-focus lens due to the development of camera module which is used in mobile-phone recently. Various types of voice coil motor are used mostly in the view point of actuators. Various type of magnetic flux flow is made by the combination of magnet, coil and yoke, etc. And the function of auto-focus is made by the proper combination of the lens components. In this research, some of the simple and economic structure is chosen to investigate the characteristics analytically among various types of lens which are used in industries. Desired level of lens module design was achieved by electromagnetic analysis using ANSYS$^{TM}$ finite element analysis program.

Preparation and Characterization of Ophthalmic Hydrophilic Silicone Lens Containing Zinc Oxide and Iron Oxide Nanoparticles

  • Shin, Su-Mi;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.427-432
    • /
    • 2021
  • This study uses silicone monomer, DMA, crosslinking agent EGDMA, and initiator AIBN as a basic combination to prepare hydrogel lenses using fluorine-based perfluoro polyether and iron oxide and zinc oxide nanoparticles as additives. After manufacturing the lens using iron oxide nanoparticles and zinc oxide nanoparticles, the optical, physical properties, and polymerization stability are evaluated to investigate the possibility of application as a functional hydrogel lens material. As a result of this experiment, it is found that the addition of the wetting material containing fluorine changes the surface energy of the produced hydrogel lens, thereby improving the wettability. Also, the addition of iron oxide and zinc oxide nanoparticles satisfies the basic hydrogel ophthalmic lens properties and slightly increases the UV blocking performance; it also increases the tensile strength by improving the durability of the hydrogel lens. The polymerization stability of the nanoparticles evaluated through the eluate test is found to be excellent. Therefore, it is judged that these materials can be used in various conditions as high functional hydrogel lens material.

The Inner Pipeline Scanning Method by Digital Image Processing and Lens Combination (영상처리기법과 렌즈조합에 의한 관로내 탐사기법)

  • Kim, Won-Dae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.1
    • /
    • pp.67-73
    • /
    • 2008
  • The most common method of pipeline inspection is to use a remote-controlled-machine equipped with a CCTV, which, however, has many limitations to accurately inspect pipeline condition. In case of a typical CCTV, since the camera looks at the end point of the pipe, the locations of the defects and distance-readings are often different. In addition, the quality and accuracy of the inspection is highly dependent on the operator's skill and experience. In this research a new system is developed by use of the image processing techniques and the lens combination. The image acquisition system is developed that acquires the front and the side view of the pipe simultaneously. Side view unwrapping and stitching technology using image process techniques are developed which delivers high resolution image data.

  • PDF

Characteristics Evaluation of the Lens for Underwater Acoustic Imaging (수중음향 영상화를 위한 렌즈 제작 및 특성 평가)

  • Cho, Wan-Ho;Kwon, Hyu-Sang;Cho, Yo-Han;Seo, Hee-Seon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.687-696
    • /
    • 2016
  • A series of process to design an acoustic lens for underwater imaging is reviewed and the method to evaluate characteristics of the lens is investigated. If the target specification of lens is given, the design process consists of the material selection, evaluation of its properties, lens geometry design, prediction of lens characteristics, manufacturing, and evaluation by measurement. In this study, an actual acoustical lens is made by cutting polymethylpentene block. The characteristics of lens are predicted by the hybrid method, combination of ray tracing and Rayleigh integral. For the direct comparison between the prediction and measurement results, a simulation method based on the equivalent source method is suggested to reflect the actual radiation pattern of transducer used for measurements. Finally, the measurement is conducted in a small water tank to observe the actual characteristics of the manufactured lens.