DOI QR코드

DOI QR Code

Preparation and Characterization of Ophthalmic Hydrophilic Silicone Lens Containing Zinc Oxide and Iron Oxide Nanoparticles

  • Shin, Su-Mi (Department of Optometry & Vision Science, Daegu Catholic University) ;
  • Sung, A-Young (Department of Optometry & Vision Science, Daegu Catholic University)
  • Received : 2021.05.11
  • Accepted : 2021.07.05
  • Published : 2021.08.27

Abstract

This study uses silicone monomer, DMA, crosslinking agent EGDMA, and initiator AIBN as a basic combination to prepare hydrogel lenses using fluorine-based perfluoro polyether and iron oxide and zinc oxide nanoparticles as additives. After manufacturing the lens using iron oxide nanoparticles and zinc oxide nanoparticles, the optical, physical properties, and polymerization stability are evaluated to investigate the possibility of application as a functional hydrogel lens material. As a result of this experiment, it is found that the addition of the wetting material containing fluorine changes the surface energy of the produced hydrogel lens, thereby improving the wettability. Also, the addition of iron oxide and zinc oxide nanoparticles satisfies the basic hydrogel ophthalmic lens properties and slightly increases the UV blocking performance; it also increases the tensile strength by improving the durability of the hydrogel lens. The polymerization stability of the nanoparticles evaluated through the eluate test is found to be excellent. Therefore, it is judged that these materials can be used in various conditions as high functional hydrogel lens material.

Keywords

References

  1. M. J. Rah, J. J. Walline, L. A. Jones-Jordan, L. T. Sinnott, J. M. Jackson, R. E. Manny, B. Coffey, S. Lyons and ACHIEVE Study Group, Optom. Vis. Sci., 87, 560 (2010). https://doi.org/10.1097/OPX.0b013e3181e6a1c8
  2. D. Fonn and B. A. Holden, Am. J. Optom. Physiol. Optic., 65, 536 (1988). https://doi.org/10.1097/00006324-198807000-00003
  3. B. A. Holden and G. W. Mertz, Investig. Ophthalmol. Vis. Sci., 25, 1161 (1986).
  4. B. A. Weissman, J. Am. Optom. Assoc., 57, 595 (1986).
  5. A. Tomlinson, P. J. Caroline and J. P. Guillon, Int. Contact. Lens Clin., 18, 53 (1991). https://doi.org/10.1016/0892-8967(91)90069-C
  6. J. K. Jang and H. S. Shin, J. Korean Ophthalmic Opt. Soc., 15, 329 (2010).
  7. S. W. Choi, B. G. Cha and J. Kim, ACS Nano, 14, 2483 (2020). https://doi.org/10.1021/acsnano.9b10145
  8. M. J. Lee, K. Lee and A. Y. Sung, J. Korean Chem. Soc., 64, 354 (2020). https://doi.org/10.5012/JKCS.2020.64.6.354
  9. M. D. Newman, M. Stotland and J. I. Ellis, J. Am. Acad. Dermatol., 61, 685 (2009). https://doi.org/10.1016/j.jaad.2009.02.051
  10. K. Schilling, B. Bradford, D. Castelli, E. Dufour, J. F. Nash, W. Pape, S. Schulte, I. Tooley, J. Bosch and F. Schellauf, Photochem. Photobiol. Sci., 9, 495 (2010). https://doi.org/10.1039/b9pp00180h
  11. T. G. Smijs and S. Pavel, Nanotechnol. Sci. Appl., 4, 95 (2011). https://doi.org/10.2147/NSA.S19419
  12. Q. Li, S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D. Li and P. J. Alvarez, Water Res., 42, 4591 (2008). https://doi.org/10.1016/j.watres.2008.08.015
  13. H. Hashimoto, H. Asaoka, T. Nakano, Y. Kusano, H. Ishihara, Y. Ikeda, M. Nakanishi, T. Fujii, T. Yokoyama, N. Horiishi, T. Nanba and J. Takada, Dyes Pigments, 95, 639 (2012). https://doi.org/10.1016/j.dyepig.2012.06.024
  14. Y. Lu, W. Dong, W. Wang, J. Ding, Q. Wang, A. Hui and A. Wang, Nanomaterials, 8, 925 (2018). https://doi.org/10.3390/nano8110925
  15. D. K. Kim, Y. Zhang, W. Voit, K. V. Rao, J. Kehr, B. Bjelke and M. Muhammed, Scr. Mater., 44, 1713 (2001). https://doi.org/10.1016/S1359-6462(01)00870-3
  16. E. Alphandery, Int. J. Pharm., 586, 119472 (2020). https://doi.org/10.1016/j.ijpharm.2020.119472