• Title/Summary/Keyword: Least squares

Search Result 2,590, Processing Time 0.028 seconds

A Coupled Recursive Total Least Squares-Based Online Parameter Estimation for PMSM

  • Wang, Yangding;Xu, Shen;Huang, Hai;Guo, Yiping;Jin, Hai
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2344-2353
    • /
    • 2018
  • A coupled recursive total least squares (CRTLS) algorithm is proposed for parameter estimation of permanent magnet synchronous machines (PMSMs). TLS considers the errors of both input variables and output ones, and thus achieves more accurate estimates than standard least squares method does. The proposed algorithm consists of two recursive total least squares (RTLS) algorithms for the d-axis subsystem and q-axis subsystem respectively. The incremental singular value decomposition (SVD) for the RTLS obtained by an approximate calculation with less computation. The performance of the CRTLS is demonstrated by simulation and experimental results.

DUAL REGULARIZED TOTAL LEAST SQUARES SOLUTION FROM TWO-PARAMETER TRUST-REGION ALGORITHM

  • Lee, Geunseop
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.613-626
    • /
    • 2017
  • For the overdetermined linear system, when both the data matrix and the observed data are contaminated by noise, Total Least Squares method is an appropriate approach. Since an ill-conditioned data matrix with noise causes a large perturbation in the solution, some kind of regularization technique is required to filter out such noise. In this paper, we consider a Dual regularized Total Least Squares problem. Unlike the Tikhonov regularization which constrains the size of the solution, a Dual regularized Total Least Squares problem considers two constraints; one constrains the size of the error in the data matrix, the other constrains the size of the error in the observed data. Our method derives two nonlinear equations to construct the iterative method. However, since the Jacobian matrix of two nonlinear equations is not guaranteed to be nonsingular, we adopt a trust-region based iteration method to obtain the solution.

Adaptive System Identification Using an Efficient Recursive Total Least Squares Algorithm

  • Choi, Nakjin;Lim, Jun-Seok;Song, Joon-Il;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3E
    • /
    • pp.93-100
    • /
    • 2003
  • We present a recursive total least squares (RTLS) algorithm for adaptive system identification. So far, recursive least squares (RLS) has been successfully applied in solving adaptive system identification problem. But, when input data contain additive noise, the results from RLS could be biased. Such biased results can be avoided by using the recursive total least squares (RTLS) algorithm. The RTLS algorithm described in this paper gives better performance than RLS algorithm over a wide range of SNRs and involves approximately the same computational complexity of O(N²).

Performance Comparison of Two Ellipse Fitting-Based Cell Separation Algorithms

  • Cho, Migyung
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.215-219
    • /
    • 2015
  • Cells in a culture process transform with time and produce many overlapping cells in their vicinity. We are interested in a separation algorithm for images of overlapping cells taken using a fluorescence optical microscope system during a cell culture process. In this study, all cells are assumed to have an ellipse-like shape. For an ellipse fitting-based method, an improved least squares method is used by decomposing the design matrix into quadratic and linear parts for the separation of overlapping cells. Through various experiments, the improved least squares method (numerically stable direct least squares fitting [NSDLSF]) is compared with the conventional least squares method (direct least squares fitting [DLSF]). The results reveal that NSDLSF has a successful separation ratio with an average accuracy of 95% for two overlapping cells, an average accuracy of 91% for three overlapping cells, and about 82% accuracy for four overlapping cells.

A transductive least squares support vector machine with the difference convex algorithm

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.2
    • /
    • pp.455-464
    • /
    • 2014
  • Unlabeled examples are easier and less expensive to obtain than labeled examples. Semisupervised approaches are used to utilize such examples in an eort to boost the predictive performance. This paper proposes a novel semisupervised classication method named transductive least squares support vector machine (TLS-SVM), which is based on the least squares support vector machine. The proposed method utilizes the dierence convex algorithm to derive nonconvex minimization solutions for the TLS-SVM. A generalized cross validation method is also developed to choose the hyperparameters that aect the performance of the TLS-SVM. The experimental results conrm the successful performance of the proposed TLS-SVM.

PSEUDO-SPECTRAL LEAST-SQUARES METHOD FOR ELLIPTIC INTERFACE PROBLEMS

  • Shin, Byeong-Chun
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1291-1310
    • /
    • 2013
  • This paper develops least-squares pseudo-spectral collocation methods for elliptic boundary value problems having interface conditions given by discontinuous coefficients and singular source term. From the discontinuities of coefficients and singular source term, we derive the interface conditions and then we impose such interface conditions to solution spaces. We define two types of discrete least-squares functionals summing discontinuous spectral norms of the residual equations over two sub-domains. In this paper, we show that the homogeneous least-squares functionals are equivalent to appropriate product norms and the proposed methods have the spectral convergence. Finally, we present some numerical results to provide evidences for analysis and spectral convergence of the proposed methods.

A Study on Process Optimization Using Partial Least Squares Response Surface Function (편최소제곱 반응표면함수를 이용한 공정 최적화에 관한 연구)

  • Park, Sung-Hyun;Choi, Um-Moon;Park, Chang-Soon
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.2
    • /
    • pp.237-250
    • /
    • 1999
  • Response surface analysis has been a popular tool conducted by engineers in many processes. In this paper, response surface function, named partial least squares response surface function is proposed. Partial least squares response surface function is a function of partial least squares components and the response surface modeling is used in either a first-order or a second-order model. Also, this approach will have the engineers be able to do the response surface modeling and the process optimization even when the number of experimental runs is less than the number of model parameters. This idea is applied to the nondesign data and an application of partial least squares response surface function to the process optimization is considered.

  • PDF

Generalized Moving Least Squares Method and its use in Meshless Analysis of Thin Beam (일반화된 이동최소자승법과 이를 이용한 얇은 보의 무요소 해석)

  • 조진연
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.497-504
    • /
    • 2002
  • In meshless methods, the moving least squares approximation technique is widely used to approximate a solution space because of its useful numerical characters such as non-element approximation, easily controllable smoothness, and others. In this work, a generalized version of the moving least squares method Is introduced to enhance the approximation performance through the Information converning to the derivative of the field variable. The results of numerical tests for approximation verify the improved accuracy of the generalized meshless approximation procedure compared to the conventional moving least squares method. By using this generalized moving least squares method, meshless analysis of thin beam is carried out, and its performance is investigated.

  • PDF

A Study of Broad-band Conformal Beam Forming using Moving Least Squares Method (Moving Least Squares 기법을 이용한 광대역 컨포멀 빔 형성 연구)

  • Jung, Sang-Hoon;Lee, Kang-In;Jung, Hyun-Kyo;Chung, Young-Seek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.83-89
    • /
    • 2019
  • In this paper, beam forming using moving least squares method (MLSM) is studied. In the previous research, the least squares method (LSM), one of the data interpolation methods, was used to determine the desired beam pattern and obtain a beam pattern that minimizes the square of the error with the desired beam pattern. However, LSM has a disadvantage in that the beam pattern can not be formed to satisfy the exact steering angle of the desired beam pattern and the peak sidelobe level (PSLL) condition. To overcome this drawback, MLSM is used for beam forming. In order to verify, the proposed method is applied in beam forming of Bezier platform array antenna which is one of conformal array antenna platform.

Asymmetric Least Squares Estimation for A Nonlinear Time Series Regression Model

  • Kim, Tae Soo;Kim, Hae Kyoung;Yoon, Jin Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.633-641
    • /
    • 2001
  • The least squares method is usually applied when estimating the parameters in the regression models. However the least square estimator is not very efficient when the distribution of the error is skewed. In this paper, we propose the asymmetric least square estimator for a particular nonlinear time series regression model, and give the simple and practical sufficient conditions for the strong consistency of the estimators.

  • PDF