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Abstract

Response surface analysis has been a popular tool conducted by engineers in
many processes. In this paper, response surface function, named partial least
squares response surface function is proposed. Partial least squares response
surface function is a function of partial least squares components and the response
surface modeling is used in either a first-order or a second-order model. Also,
this approach will have the engineers be able to do the response surface modeling
and the process optimization even when the number of experimental runs is less

* This study was partially supported by Korean Ministry of Education through Research Fund,
1998-015-D00046.
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than the number of model parameters. This idea is applied to the nondesign data
and an application of partial least squares response surface function to the process
optimization is considered.

1. Introduction

When there are exact dependencies among the columns of a matrix, that is,
when one or more columns can be exactly expressed as linear combinations of
other columns, it is said that there exists collinearity. In statistics the term
multicollinearity is used in situations where the variables are mutually collinear
because of high correlations among the variables. If there is multicollinearity
among the variables in regression analysis, the least squares estimates can not
be obtained or, even if they are obtained, they are unstable.

Some well-devised techniques can be used to reduce the effects of
multicollinearity in regression analysis. For example, there are such techniques as
principal component regression(Massy, 1965) and ridge regression(Hoerl and
Kennard, 1970). A method, called partial least squares (PLS) regression, has been
developed in the field of chemometrics to reduce the effect of multicollinearity of
explanatory variables to the results of regression analysis. It has worked well in
many chemical problems and has become one of the most popular regression
methods in chemometrics. In recent simulation studies for PLS regression its good
performance has been known to statisticians (see, e.g., Frank and Friedman, 1993).
As the PLS regression algorithm originally proposed by Wold(1975) was difficult
to be understood compared with other regression methods such as ordinary least
squares, principal component regression, and ridge regression, several algorithms
have been developed to look at PLS regression in a new and easy light (see, e.g.,
Martens, 1985; Helland, 1988).

This paper discusses PLS response surface function which is written as

n=g(Ty,,T), aq<bp,

where T;'s are PLS components and p is the number of independent variables.

we suppose the first-order model, the function g is the first-order function. If we
suppose the second-order .model, the function g is the second-order function. The
case of single response variable is also considered. This idea is applied to the
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cases of the actual process, nondesign data and #<p in the first-order model,
n< (p+1)(p+2)/2 in the second-order model, and the general case, nondesign

data and #)p in the first-order model, n= (p+ 1)(p+2)/2 in the second-order
model. As for PLS response surface function, the response surface modeling and
the process optimization are considered.

2. Partial Least Squares Response Surface Function
In this section we consider PLS response surface function which is written as
7=8(Ty, -, Tp), a<p, (2.1)
where 7T;'s are PLS components and either a first-order or a second-order model

is used. At first, the proposed algorithm using algorithm of Wold for composing
PLS components is as follows.

1.1 Coding formula:

xi_ XlH_X;L ’ 1—1’...ip1

where X iz and X ;4 are the low and high values of X, respectively, X; is the

i— th process variable.

1.2 Initialize(Centering):
Xo—=( X—1 %), y—(y—yD),

where 7 and p indicate the number of observations and process variables,
respectively, X is an #Xp matrix of process variables, y is an #—dimensional

vector of response variable, 1 is a unit vector with 1 in its all elements, X is

the mean vector of X, and —y is the mean of y.
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1.3 For :=1,2,:*,q, compute

w, = X'} ¥ia

t,= X, w,

Xt X t,
_ v it ¥yt
q; BT ( t',-tf)
X, = X, — t; py
Vi= Yi1— t; q;

Suppose that the engineer is concerned with a process involving a response Y
that depends on the PLS components 7T,---,7T,. The PLS components, T},

represent the linear combination of x;,

Ti=cot Xiesx, i=Llwai=10,
where ¢4 and é,-,- are constants. The relationship is
Y=2g(T\,,T)+e, (22)

where the form of the true response. function g is unknown and perhaps very
complicated, and ¢ is the term that represents other sources of Vadability not
accounted for in g.

‘ The case is considered where there is one response variable, Y, and p process

variables, Xj,---, X, The PLS form of a first-order model in p input variables
X i '",X ? iS
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Y=8,+ g 8 Ti+e, 2.3)

where ¢<p, Y is an observable response variable, &y, 6y,*", 8, are unknown

parameters, and £ is a random error term. If & has a zero mean, then the

nonrandom portion of the model in (2.3) represents the true mean response, 7%,
that is, )

7= 8+ g‘\a,- T, (2.4)

and ¢ in (2.3) is regarded as the experimental error.
As an introduction to the construction of the first~order model, let us write the
first-order model, over n observations, in matrix form as

y= T, &+ €, (2.5)
wheré y is a vector of # observations, &,=(8,6),-,8) is a (g+1)x1
vector of unknown parameters, €=(g,,**,&,)  is an #X1 vector of errors, and

(1 Ty Ty - Ty

1 Ty Ty - Ty

1 Ty Tw - Ta

is an #X(g+1) matrix of settings of the PLS components. More specifically, the
T, matrix is of the foom T,=[ 1: C7] where 1 is an nx1 column vector
of ones and Cg is an nXg matrix. The matrix C will be referred to as the
component matrix. We assume that the random errors are independently
distributed as normal variables with zero mean and common variance o°.

Then the least squares estimator of &, is
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b=( T, T,) ' T, v. (2.6)
Hence, the fitted resbonse surface model 1s
= b+ b, Tot+-+b, T,. @7)
In the full model,
y=T &+ e,
where T matrix is partitioned by T=[ T,, T,], henée, model is rewritten by
y= T, 8,+ T, 6+ €,

where T, includes intercept and ¢ components, and T, includes p—gq

components. The MSE of &, is
MSE( b)=( T, T '#+ A & 8, A",
because

E( b)) = E[( T, Ty ! T, vl
=( T, T) ' T, Ts
= ( T, T) ' T,/[ Tqd,+ T,&]
= S+ T, T ' T, T.é&

S,+ A,

Var( b)) = Var[( T, Ty ' T, vl
=( T, T) ' T,/ 14 T, To ' T,

=( T, T,) ',
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where A=( T, Tp ' T, T,

1 Ty Ty Ty

1 Ty Ty -+ Ty

T ,= ,
|1 Ty T Ty
[ Thre+1) Thrgeen = Tyl
Taq+y Tag+n - T
T,=

Tn(q+l) Tn(q+2) Tnp.

The least squares estimator, b, is rewritten by

b=[ Z"]z( T T) ! Ty,

r

because

E( 7,

Var( 7,) = ¢t ,( T, T ' t, &,

t', 8,+ t',A 5,

MSE(P,)= t',( T, T 't, +( t', A 8- t', 8)

We can consider several criteria for selection of the number of components, g¢.

We propose the residual mean square,

MSE,= oot

the coefficient of determination.
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SSE
=1— —2"g
R.=1 SST

the adjusted coefficient of determination,

2 _1_(1— p2y_n—1
R u=1-0- R 7 .

and the total squared error,

E
C,= —§§—1+2(q+1)—n ,

;2

where ? is MSE in the full model.

We can consider a sequential F'-test to select the number of components. When
we select a pertinent response surface model, we add in the model important
component variable one by one. Hence, the test of the null hypothesis,

Hy: 6 ,4+1=0, is performed by calculating the value of the test statistic

SSR( bq+1/bo, bl,"‘,&l
MSE ’

F=

where
SSR( bq+|/bo, b],"‘, bq)= SSR( bo, bl,"', bq+l)_ SSR( bo, bl,‘”, ba) and
MSE is calculated in the model, Y= &+ 6, T\ +--+ 8,4 T 41+ €. Assuming

normality of the errors, if the null hypothesis is true, the F-statistic follows F
distribution with 1 and n#—¢g—1 degrees of freedom. If the value of F-statistic
exceeds F 4) n—o—1, then the null hypothesis is rejected at the a level of

significance.

In the absence of sufficient knowledge concerning the shape of the true
response surface, generally the experimenter’'s first attempt at approximating the
shape is by fitting a first-order model to the response values. When, however;
the first-order model suffers from lack of fit arfsing from the existence of surface
curvature, the first-order model is upgraded by adding higher order terms to it.
The next higher order model is the second-order model
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Y=o0y+ 216 Ttk 284 T2+ Z ,256" T: T,+e, 2.8)

where T,,--,T, are the PLS components which influence the response Y;

&, 8:;(i=1,,@,8;(i=1,,¢ j=1,-+,9) are unknown parameters, and ¢ is
the random error.

Then the least squares estimator of &), is
b=( T, T T, v, (2.9)
where

1 Ty Typ o Ty Tyl Tt TuTip - Tie-n T

T,=|! Ta Tz Ta Ta® = T’ TuTa - Tuep Talf,
1 T, T, Tmz Tn12 an2 TyTa - Tn(q—l) Tml
Hence, the fitted response surface model is

Y= byt by Ti+ b, Te+ by Ty24-+by T
(2.10)
tbyp Ty Tot+ -+ b-10¢ T (o-n 7T,

3. Application of Partial Least Squares Response Surface
Function to Process Optimization

In this section we consider procedures that can be used to find the settings of
the input variables which produce the most desirable response values. These
response values may be the maximum yield or the highest level of quality coming
off the production line. Similarly, we may seek the variable settings that minimize
the cost of making the product. In any case, the set of values of the input
variables which result in the most desirable response values is called the set of
optimum conditions. An application of PLS response surface function to process
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optimization is considered.

The first step in the process of seeking optimum conditions is to identify the
input variables that have the greatest influence on the response. Generally, the
fewer the number of variables that have an effect on the response, the easier it is
to identify them. Once the important variables are discovered, the next step is to
postulate a model which expresses the response of interest as a function of the
variables. If nothing, or even if very little, is known of the relationship between
the response variable and the important input variables, then the simplest form of
model equation is postulated. The first-order model provides the basis for
performing an initial set of experiments, which, upon completion, may suggest the
fitting of a different model form along with performing further experimentation. If
at any time in the process of model developing it is discovered that further
experimentation appears uneconomical, the procedure is terminated. The sequence
of fitting and testing the model forms and the eventual selection of a model are
the prelude to the determination of the optimum operating conditions for a process.

In the case of single response variable, for searching optimum conditions dual
quasi-Newton optimization is used. Let us consider the fitting of a second-order

model in ¢ component variables of the form

Y=5+ 28 Tit gaﬁ T2+ Z‘: ’gza,-,- T, T+e. @.D

For our purposes, let us assume that observed response values are collected at the
points of a second-order design and the fitted second-order polynomial is

P=bot S6Ti+ Bibs T2+ 8 3165 Ti T, (32)

After the fitted model in (3.2) is checked for adequacy of fit in the region defined
by the coordinates of the design and is found to be adequate, the model is then
used to discover the optimum condition inside the experimental region.

The dual quasi-Newton optimization technique works well from medium to
moderately large optimization problems where the objective function and the
gradient are much faster to compute than the Hessian. The dual quasi-Newton
optimization technique does not need to compute second-order derivatives, but in
general it requires more iterations than the techniques which compute
second-order derivatives.
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4. Applied Example

This example is the data of the process in a S oil refinery which is given in
Park (1990). The response variable is the color tone of the outlet of the reactor in
the sweetening process and the process variables of effecting the color tone are
six process variables. The six process variables are feed mecaptan (X)), feed
temperature (X;), feed ending point (X,) and oil content (X)) in the feed
condition and air injection content (X3), activity injection content (Xs) in the

reactor handing condition. The data set is a good example of what often happens
in practice. The data is presented in <Table 1>.

< Table 1 > Raw Data of Color Tone

X1 | Xo| X3 Xu| X5 | Xs Y X1 | Xo| X3 Xq| Xs| Xs Y
1116 130 | 46 | 247 | 62 |1000( 21 {1186 139 | 52 | 265 | 52 | 138 | 17
915( 135 | 50 | 251 | 70 | 942 21 {117.7| 139 | 50 | 270 | 40 | 138 | 17
908 135 | 50 | 245 | 70 | 941] 21 |1175| 150 | 50 | 273 | 40 | 138 | 21
808( 175 | 43 | 247 | 80 | 163| 13 §1143| 173 | 40 | 259 | 40 19 18
828 145 | 46 | 248 | 80 | 220| 20 [j1332] 115 | 58 | 270 | 60 96 | 19
786|145 | 46 | 255 | 80 | 220} 20 )1295| 107 | 53 | 274 | 40 96 | 23
932 | 120 | 43 | 254 | 80 | 220 21 {1284 128 | 59 [.262 { 40 96 | 21
9371120 | 38 | 253 | 8 | 164| 23 12144 128 | 57 | 268 | 40 | 11.0| 21
%9 120 | 38 | 253 | 8 | 109| 21 £1500| 110 | 51 | 269 | 40 271 23
976 | 115 | 42 | 256 | 70 | 108 27 }[1508| 110 | S0 | 276 | 40 30| 23
1000 115 | 42 | 254 | 70 | 108] 26 {1500 110 | 49 | 275 | 40 30| 24
1000 115 | 50 {260 | 50 | 100| 26 [1069| 110 | 49 | 271 | 40 1 30| 26
1000| 115 § 51 | 264 | 40 09 26 {1243 120 [ 53 | 271 | 40 30 20
1000 119 | 47 | 268 | 40 09] 27 1392 105 { 52 | 274 | 40 22| 24
987 119 | 46 | 259 | 40 10| 28 §139.7| 119 | 53 | 270 | 40 12 22
1000| 119 | 44 | 268 | 40 14| 27 §1404| 119 | 52 | 266 | 40 12 | 22
940 135 | 45 | 261 | 50 28| 23 |1404| 119 | 48 | 276'| 40 1.2

13871 160 | 53 | 268 | 70 | 969 17 {1389 119 | 50 | 270 | 40 13 26
1570] 143 | 56 | 264 951 20 §1395) 119 | 51 | 271 | 40 18

1600| 150 | 55 | 265 | 36 | 944| 18 §1059| 133 | 52 | 260 | 40 491 20
1600 137 | 47 | 261 | 65 | 944 21 |110.0| 133 | 52 | 269 | 40 39| 23
1190 128 { 59 | 2714 | 40 | 82| 21 |1016| 133 | 53 | 273 | 40 39 ] 22.
1160 139 | 53 | 273 | 52 1381 19

At first, the correlation matrix and multicollinearity measure are presented
<Tables 2>.
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< Table 2 > Correlation Matrix and Multicollinearity Measure

X Xy Xy Xy KgXKg Y ~~VIF  Condition Number

X 1.00 -0.17 052 063 -055 0.15 -0.07 2.3563

X, -0.17 1.00 -0.07 -0.34 025 039 -0.74 1.2794

X3 052 -0.07 1.00 055 -05 0.18 -0.18 2.0827

Xy 063 -034 055 1.00 -0.76 -033 0.17 38467 - 41652

X; -055 025 -056 -0.76 1.00 028 -0.26 2.71667

X 015 039 018 -033 028 1.00 -0.35 2.1549

Y -0.07 -0.74 -0.18 0.17 -0.26 -0.35 1.00

The components, T, -, Tg, are obtained as

T, = —46.0—5.8314x, —48.647 x; — 12.751 x3 + 13.548 x4 — 26.101 x5 — 34.564 x;,
T, = —3.35—16.443 x; — 33.860 x; — 20.542 x3 — 13.800 x4 + 4.2203 x5+ 4.5939 x¢,
T3 = 1.27—0.0548961—26.074x2-*5.5019x3—3.0171x4-—12.124x5+23.024x6,

S
I

0.11 —4.0011 x, +1.4505 x; — 3.1761 x5+ 0.0958 x, — 4.9825 x5+ 2.1048 x¢,
T; = 0.18—0.0786x;+0.1298 x; — 1.1366 x5+ 1.3942 x, +0.3081 x5+ 0.4672 x5,
Ts = —0.03—0.4225x,—0.0754 x5+ 0.2322 x3 + 0.3917 x4+ 0.1447 x5+ 0. 1249 x5 .

And for each model, model selection criterions are displayed in <Table 3>.

< Table 3 > Model Seléction Criterions for Color Tone Data

R ¢ R MSE, C, Sequential F'—test
Coded Variable | 09432 | 08530 | 14784

g=1 04342 | 04073 | 59601 51.98
g=2 0.6744 0.6327 3.6937 24.81 F=9.59>F 53,2
g=3 08089 | 07508 | 24152 464 F=6.17>F g 5.3
g=4 08218 | 07387 | 26275 337 | F=0.43<Fogsn
q=5 08713 | 07641 | 23721 5.03
g="6 09432 | 08530 | 14784 7.00
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The number of components, g=3, is selected by the sequential F—test. By
fitting a second-order model with the first three components,
Y( T, T3)= 21.912085+0.050037 T, +0.085157 T3+ 0.006440 T}
+ 0.000160 7,*—0.000766 T,%+0.000264 T5°
+ 0.000841 T, T,—0.001113 T, T5—0.000172 T, T5.

The engineers wish to maximize the response variable. <Table 4> shows optimum

condition, predicted value under the optimum condition, Var( P) and

iasz( ).

< Table 4 > Optimum Condition for Color Tone Data

Optimum Condition Pr\(;d icted Var( P) _Ei;sz( )]
alue
x; = 0.019, x,=—0.874
Coded %3 = —0.051, x,=—0.093 | 36023 16.9027
Variable x5 = 0.028, x= 0.470
x = —0.085, x,=—0.715
g=1 x3 = —0.187, x,= 0.199 22.5239 0.0481 446.2972
X5 = —0.383,XG=—0.508
% = —0.224, x,=—0.833
qg=2 x3 = —0.335, x4=—0.000 24.7671 0.1787 371.0129
3 X5 = _0.222,x6=_0-304
x; = —0.214, x,=-0.805
=3 x3 = —0.319, x,= 0.031 24.9931 1.5063 5.7829
x5 = —0.232, x=—0.385
x = —0.323, x;=—0.769
g=4 x3 = —0.410, x,=—0.030 25.9058 1.9522 475665
x5 = —0.285, xg=—10.228
x = 0.012, x,=—0.759
g=>5 x3 = 0.232, x4,=—0.598 27.9518 7.4621 0.0421
X5 = —0.012.x5=—0.102
x, = 0.019, x;,=-0.874
=6 x3 = —0.051, x,=-—0.093 36.0236 16.9027
x5 = 0.028, x¢= 0.470
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Because we select ¢=3, we now decide optimum condition,
x=—0.214, x,=-0.805, x3=—10.319, 2,=0.031, x5=—0.232, x,=—0.385.
Hence, the optimum conditions of six process variables are

X,=110.5,  X,=111.8, X3=45.1, X,=260.9, X;=52.8, X;=31.3.
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