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PSEUDO-SPECTRAL LEAST-SQUARES METHOD FOR

ELLIPTIC INTERFACE PROBLEMS

Byeong-Chun Shin

Abstract. This paper develops least-squares pseudo-spectral collocation
methods for elliptic boundary value problems having interface conditions
given by discontinuous coefficients and singular source term. From the
discontinuities of coefficients and singular source term, we derive the in-
terface conditions and then we impose such interface conditions to so-
lution spaces. We define two types of discrete least-squares functionals
summing discontinuous spectral norms of the residual equations over two
sub-domains. In this paper, we show that the homogeneous least-squares

functionals are equivalent to appropriate product norms and the proposed
methods have the spectral convergence. Finally, we present some numer-
ical results to provide evidences for analysis and spectral convergence of
the proposed methods.

1. Introduction

Let Ω be the square (−1, 1)2 and let Ω1 = (−1, 0) × (−1, 1) and Ω2 =
(0, 1) × (−1, 1) be two open subsets of Ω. Denote by Γ the interface between
Ω1 and Ω2, i.e., Γ = Ω̄1 ∩ Ω̄2. We consider the second-order elliptic boundary
value problem:

(1.1)





−∇ · (a∇p) + b · ∇p+ c0 p = f + νδ(x)g(y) in Ω,
p = 0 on ΓD,

n · (a∇p) = 0 on ΓN ,

where ∂Ω = ΓD∪ΓN denotes the boundary of Ω, f is a given piecewise continu-
ous function; a and c0 are piecewise constant, b is a piecewise vector constant,
and n is the outward unit vector normal to the boundary. Here, νδ(x)g(y)
is a singular source term where δ(x) denotes the Dirac δ-function with the
support on the interface Γ, ν is a constant and g(y) is a continuous function.
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In various applications of physics, engineering and biological sciences, differen-
tial equations and partial differential equations with discontinuous coefficients
and/or singular source terms have been commonly used. The singular source
terms are also used for modeling extremely small-scale perturbations, such as
the wave interaction with a singular defect in a disordered media, particle-flow
interactions, particle-particle interactions, etc([7], [19], [29]).

In recent years there has been lots of interest in the use of first-order system
least-squares method (FOSLS) for numerical approximations of elliptic partial
differential equations, Stokes equations and Navier-Stokes equations. Introduc-
ing an extra physically meaningful variable u = a∇p, the equation (1.1) above
can be written as an equivalent first-order system of linear equations (see [9],
[10] and [24]). For a use of finite element method, the least-squares approach
was widely studied in [14], [15], [17], [5], [8], [9], [10] and [18], and a least-
squares method for the interface problem of Poisson equations was introduced
in [1] and [13]. Least-squares approaches using spectral method were also stud-
ied in [20], [21], [22] and [25]. The least-squares methods have several benefits
such that the resulting algebraic system is always symmetric positive definite
and the methods can avoid LBB compatibility condition. For more details we
refer to [6] and references therein.

For an interface problem without any singular source term, in [13] they pro-
posed and analyzed a least-squares finite element method. To avoid global
regularity requirements, they introduce two terms in the least-squares func-
tional that are related to the conditions on the interface. They defined the
least-squares functional including the integrations of jumps over the interface to
impose the continuous interface conditions. Also one may find the least-squares
finite element approaches for elliptic problems with discontinuous coefficients
in [4] and [3]. The success of finite element least-squares method for such an
interface problem stimulated the usage of pseudo-spectral methods or spectral
element methods which is known as a very accurate method (see [2], [12], [16]
and [24]). Furthermore, in [20] they analyzed the least-squares pseudo-spectral
collocation method for elliptic problems without any interface. They also pro-
vided the analysis and numerical computations for Stokes equations in [21].
Therefore we believe that it is worth to develop the least-squares Legendre
and Chebyshev pseudo-spectral methods to solve the first-order system corre-
sponding to the interface problem (1.1). On the other hand, one may consider
least-squares methods using negative norm or mesh dependent norm because
the right hand side belongs to H−1(Ω). Such approaches can be found in [6], [5]
and [8] for the finite element approximation, and in [22] for the pseudo-spectral
approximation. Instead of using negative norm, in [11] they developed the
discrete FOSLS by directly approximating H(div) ∩H(curl)-type space based
on the Helmholtz decomposition, in which under general assumptions they es-
tablished error estimates in the L2- and H1-norms for the vector and scalar
variables, respectively. However, such methods need the global regularity for
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the solution so that the methods have a limited convergence with lack of global
regularity.

In this paper, we introduce a pseudo-spectral least-squares method having
full spectral convergence in an appropriate norm using two domain decomposi-
tion provided that the solution has local regularity enough in each sub-domain.
To do this, we first apply a standard finite element argument to the problem
(1.1) in order to derive two elliptic problems without any singular source term
defined in each sub-domain, respectively. The singular source term resolved
itself into a jump interface condition. See [23] and [28] for more details. Intro-
ducing the flux variable u = a∇p, such two elliptic equations can be written
as equivalent two first-order systems of linear equations which are very similar
to the equations considered in [13]. Our interface condition for the trace of
the normal components of the flux variable is discontinuous due to the singu-
lar source term. Such a jump condition is indeed given by [n · u]Γ = νg(y).
We define a solution space of functions satisfying not only essential boundary
conditions but also jump interface conditions. That is, we include the jump
interface conditions into the solution space as essential conditions. We then
define two kinds of least-squares functionals summing the broken L2(Ω)-norms
of residual equations of two systems. We do not add any integration over the
interface to the least-squares functionals. The purpose of this paper is to show
that the homogeneous least-squares functionals are equivalent to appropriate
broken norms and the methods have spectral convergence in their norms. We
also present the implementation for the proposed methods with some numerical
results for two interface problems. In this paper, we analyze our methods for
only Legendre spectral approximation. For the Chebyshev spectral approxima-
tion, we provide only numerical experiments, but one may easily analyze the
method using the similar arguments of this paper together with some lemmas
given in [20]. These approaches can be further applied to the finite element
approximation.

This paper consists of as follows. In Section 2, we provide definitions, nota-
tions and basic known facts. In Sections 3, two kinds of least-squares pseudo-
spectral collocation methods are presented including the norm equivalence and
spectral convergence. In Section 4, we explain how the linear system can be set
up and provide several numerical experiments including Legendre and Cheby-
shev approximations for interface problems.

2. Preliminaries

In this section, we provide some preliminaries, definitions and notations for
future use. The standard notations and definitions are used for the weighted
Sobolev spaces Hs

w(Ω)
2 equipped with weighted inner products (·, ·)s,w and

corresponding weighted norms ‖ · ‖s,w, s ≥ 0, where w(x, y) = ŵ(x)ŵ(y) is
Legendre weight function when ŵ(t) = 1 or Chebyshev weight function when
ŵ(t) = 1√

1−t2
. The space H0

w(Ω) coincides with L2
w(Ω), in which case the
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norm and inner product will be denoted by ‖ · ‖w and (·, ·)w, respectively.
For Legendre case, we simply write the notations without the subscript w, for
example, Hs(Ω) := Hs

w(Ω), (·, ·) := (·, ·)w, ‖ · ‖ := ‖ · ‖w if w(x, y) = 1.

Let Ḣs
w(Ω) be a subspace of L2

w(Ω) given by

Ḣs
w(Ω) = { v = [v1 : v2] ∈ L2

w(Ω) | vi = v|Ωi
∈ Hs

w(Ωi), i = 1, 2 }
equipped with the so-called “broken” norm

‖v‖2
Ḣs

w
(Ω)

= ‖ v|Ω1
‖2Hs

w
(Ω1)

+ ‖ v|Ω2
‖2Hs

w
(Ω2)

.

Note that ‖v‖2
Ḣs

w
(Ω)

= ‖v‖2Hs
w
(Ω) if v ∈ Hs

w(Ω). Let PN be the space of all

polynomials of degree less than or equal to N . Let {ξi}Ni=0 be the LGL or CGL
points on [−1, 1] such that

−1 =: ξ0 < ξ1 < · · · < ξN−1 < ξN := 1.

For Legendre case, {ξi}Ni=0 are the zeros of (1− t2)L′
N (t) where LN is the N th

Legendre polynomial and the corresponding quadrature weights {wi}Ni=0 are
given by

wj =
2

N(N + 1)

1

[LN (ξj)]2
, 1 ≤ j ≤ N − 1,

w0 = wN =
2

N(N + 1)
.

For Chebyshev case, {ξi}Ni=0 are the zeros of (1− t2)T ′
N (t) where TN is the N th

Chebyshev polynomial and the corresponding quadrature weights {wi}Ni=0 are
given by

wj =
π

N
, 1 ≤ j ≤ N − 1,

w0 = wN =
π

2N
.

Then, we have the following LGL or CGL quadrature formula such that

(2.1)

∫ 1

−1

p(t)ŵ(t) dt =

N∑

i=0

wi p(ξi), ∀ p ∈ P2N−1.

Let {φi}Ni=0 be the set of Lagrange polynomials of degree N with respect to
LGL or CGL points {ξi}Ni=0 which satisfy

φi(ξj) = δij , ∀ i, j = 0, 1, . . . , N,

where δij denotes the Kronecker delta.
Denote by QN (D) the space of all polynomials, defined on D, of degree less

than or equal to N with respect to each single variable x and y. Let

Q̇N = { u ∈ L2(Ω) : u|Ω̄ℓ
∈ QN (Ω̄ℓ), ℓ = 1, 2 }.
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Define the basis functions for Q̇N as

ψ1
ij(x, y) =

{
φi
(
2x+ 1

)
φj(y) for − 1 ≤ x ≤ 0,

0 for 0 < x ≤ 1,

ψ2
ij(x, y) =

{
0 for − 1 ≤ x < 0,
φi
(
2x− 1

)
φj(y) for 0 ≤ x ≤ 1.

The two-dimensional LGL or CGL nodes {xℓij} and weights {wℓ
ij} with respect

to each domain Ωℓ (ℓ = 1, 2) are given by

xℓij = (ξℓi , ξj), wij =
1

2
wi wj , i, j = 0, 1, . . . , N, ℓ = 1, 2,

where

ξℓi =





−1 +
1

2

(
1 + ξi

)
for ℓ = 1,

1

2

(
1 + ξi

)
for ℓ = 2.

For any piecewise continuous functions u and v on Ω̄, we define the discrete
scalar product and norm respectively as

〈u, v〉w,N =
2∑

ℓ=1

N∑

i,j=0

wij u(x
ℓ
ij) v(x

ℓ
ij) and ‖v‖w,N = 〈v, v〉

1

2

w,N .

Then, one may easily show from (2.1) that

(2.2) 〈u, v〉w,N = (u, v)w =

∫

Ω

uvw dx for uv ∈ Q̇2N−1.

It is well-known that

(2.3) ‖v‖w ≤ ‖v‖w,N ≤ γ∗‖v‖w, ∀ v ∈ Q̇N ,

where γ∗ = 2 + 1
N

for Legendre case and γ∗ = 2 for Chebyshev case.

For any piecewise continuous function v on Ω̄, we define the interpolant
INv ∈ Q̇N of v at the LGL or CGL points as

(2.4) INv(x) =

2∑

ℓ=1

N∑

i,j=0

v(xℓij)ψ
ℓ
ij(x), ∀ x ∈ Ω̄.

Using the results given in [2, 12, 26], one may easily check the following inter-
polation error estimate given by

(2.5) ‖v − INv‖Ḣk
w
(Ω) ≤ C Nk−s‖v‖Ḣs

w
(Ω), k = 0, 1,

provided v ∈ Ḣs
w(Ω) for s ≥ 2. Using (2.2)–(2.5) we can show that for any

u ∈ Ḣs
w(Ω), s ≥ 2, and any vN ∈ Q̇N

(2.6) |(u, vN )w − 〈u, vN 〉w,N | ≤ C N−s ‖u‖Ḣs
w
(Ω) ‖vN‖w.

Throughout this paper, denotes a generic constant C depending only on the
physical domain Ω and coefficients given in the problem (1.1).
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3. Pseudo-spectral least-squares method

In this section, we investigate the Legendre pseudo-spectral least-squares
method for the first-order system of linear equations equivalent to the problem
(1.1). Throughout this section, we set w(x, y) = 1.

For v = [v1 : v2] ∈ [Ḣ1(Ω)]2, along the interface Γ denote by

[n · v]Γ = n1 · v1 + n2 · v2 and [τ · a−1v]Γ = a−1
1 τ 1 · v1 + a−1

2 τ 2 · v2,

where ai := a|Ωi
denotes the constant diffusion coefficient over subdomain Ωi,

and ni and τ i are unit normal and tangent vectors on Ωi, respectively. Let ∇×
denote the curl operator given by ∇ × v = ∂xv2 − ∂yv1 for a vector function
v = (v1, v2)

T .
In order to solve the problem (1.1) via the interface problem, we need to first

derive the jump conditions from the singular source term s(x, y) = νδ(x)g(y).
By a standard finite element argument, we can derive the following jump con-
dition (see [23] and [28]), for p = [p1 : p2] ∈ H1(Ω)

[n · (a∇p)]Γ = a1∂xp1(0, y)− a2∂xp2(0, y) = νg(y) for all y ∈ (−1, 1).

3.1. Least-squares of [Ḣ1(Ω)2 × H
1(Ω)]-norm equivalence

In this subsection, we establish the pseudo-spectral least-squares method
whose homogeneous functional is equivalent to [Ḣ1(Ω)2 ×H1(Ω)]-norm.

For a simple analysis, we consider the function g(y) as its LGL-interpolant
INg, i.e., g = INg. Let

V := {q ∈ H1(Ω) : q = 0 on ΓD},
and let W be a space of vector functions:

W := {v ∈ [L2(Ω)]2 : ∇ · v ∈ L̇2(Ω), ∇× (a−1v) ∈ L2(Ω), n · v = 0 on ΓN ,

τ · a−1v = 0 on ΓD, [n · v]Γ = νg(y) and [τ · a−1v]Γ = 0 }
equipped with the norm

‖v‖2
W

= ‖v‖2L2 + ‖∇ · v‖2
L̇2(Ω)

+ ‖∇× (a−1v)‖2L2(Ω).

If ν = 0, then W ⊂ H(div; Ω) ∩H(curl a−1; Ω) where

H(div; Ω) = {v ∈ [L2(Ω)]2 : ∇ · v ∈ L2(Ω)}
equipped with the norm

‖v‖2H(div;Ω) = ‖v‖2L2(Ω) + ‖∇ · v‖2L2(Ω)

and

H(curl a−1; Ω) = {v ∈ [L2(Ω)]2 : ∇× (a−1v) ∈ L2(Ω)}
equipped with the norm

‖v‖2H(curla−1;Ω) = ‖v‖2L2(Ω) + ‖∇ × (a−1v)‖2L2(Ω).
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One may show from [10] that there exists a constant C > 0 such that

1

C
‖v‖2

Ḣ1(Ω)
≤ ‖v‖2

W
≤ C ‖v‖2

Ḣ1(Ω)

so that W is a subspace of [Ḣ1(Ω)]2. Let

WN = W ∩ [Q̇N ]2 and VN = V ∩ Q̇N .

Introducing the flux variable u = a∇p and using the identities

∇× a−1u = 0 in Ω and τ · a−1u = 0 on ΓD,

we have the first-order system of linear equations equivalent to (1.1) such that

(3.1)





u− a∇p = 0 in Ω,
−∇ · u+ b · ∇p+ c0 p = f in Ω,

∇× (a−1u) = 0 in Ω,
p = 0 on ΓD,

n · u = 0 on ΓN ,
τ · (a−1u) = 0 on ΓD.

Define the least-squares functional for the system (3.1) as
(3.2)
G(v, q; f) = ‖f+∇·v−b·∇q−c0q‖2L̇2(Ω)

+‖v−a∇q‖2
L̇2(Ω)

+‖∇×(a−1v)‖2
L̇2(Ω)

for (v, q) ∈ W × V . The first-order system least-squares variational problem
for (3.1) is to minimize the quadratic functional G(v, q; f) over W × V : find
(u, p) ∈ W × V such that

(3.3) G(u, p; f) = inf
(v,q)∈W×V

G(v, q; f).

The corresponding variational problem is to find (u, p) ∈ W × V such that

(3.4) b(u, p;v, q) = f(v, q) ∀ (v, q) ∈ W × V,

where the bilinear form a(·; ·) is given by

b(u, p;v, q) =
(
∇ · u− b · ∇p− c0 p, ∇ · v − b · ∇q − c0 q

)
L̇2(Ω)

+
(
u− a∇p, v − a∇q

)
L̇2(Ω)

+
(
∇× (a−1u), ∇× (a−1v)

)
L̇2(Ω)

and the linear form f(·) is given by

f(v, q) = −
(
f,∇ · v − b · ∇q − c0 q

)
L̇2(Ω)

.

Define

Gℓ(v, q; f) = ‖f +∇ · v − b · ∇q − c0 q‖2L2(Ωℓ)

+ ‖v− a∇q‖2L2(Ωℓ)
+ ‖∇× (a−1v)‖2L2(Ωℓ)

for ℓ = 1, 2.

Then we have
G(v, q; f) = G1(v, q; f) +G2(v, q; f).

In this paper, we assume that there exists a unique solution (p,u) ∈ Ḣk(Ω)×
[Ḣk−1(Ω)]2 with k ≥ 2 for problem (3.1). See [27] for more details.
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The following theorem establishes the continuity and ellipticity of the bilin-
ear form a(·; ·) so that there exists a unique solution for the problem (3.4).

Theorem 3.1. For any (v, q) ∈ W × V , there exists a positive constant C
such that

1

C

(
‖v‖2

Ḣ1(Ω)
+ ‖q‖2H1(Ω)

)
≤ G(v, q; 0) ≤ C

(
‖v‖2

Ḣ1(Ω)
+ ‖q‖2H1(Ω)

)
.

Proof. The functional Gℓ(·, ·; ·), i = 1, 2, is a special case of the general form
given in [10]. Using the similar argument given in [10], we can easily show that
there exists a constant C > 0 such that, for i = 1, 2,

1

C

(
‖v‖2H1(Ωℓ)

+ ‖q‖2H1(Ωℓ)

)
≤ Gℓ(v, q; 0) ≤ C

(
‖v‖2H1(Ωℓ)

+ ‖q‖2H1(Ωℓ)

)
.

This completes the proof of the theorem. �

Define the discrete least-squares functional using the discrete spectral norm
as

(3.5) GN (v, q; f) = ‖f+∇·v−b ·∇q−c0 q‖2N +‖v−a∇q‖2N+‖∇×(a−1v)‖2N
for (v, q) ∈ WN × VN . The discrete least-squares problem associated to (3.5)
is then to minimize the quadratic functional GN (v, q; f) over WN × VN and
the corresponding variational problem (Legendre pseudo-spectral collocation
problem) is to find (uN , pN ) ∈ WN × VN such that

(3.6) bN (uN , pN ;v, q) = fN(v, q), ∀ (v, q) ∈ WN × VN ,

where the discrete bilinear form aN (·; ·) and linear form fN (·) are given by

bN(uN , pN ;v, q) = 〈∇ · uN − b · ∇pN − c0 pN ,∇ · v − b · ∇q − c0 q〉N
+ 〈uN − a∇pN ,v − a∇q〉N
+ 〈∇ × (a−1uN ),∇× (a−1v)〉N

and

fN (v, q) = −〈f,∇ · v − b · ∇q − c0 q〉N .
In [20], they established the least-squares pseudo-spectral collocation method

for an elliptic equations with continuous coefficients. The similar arguments
given in [20] yields the following theorem which shows the continuity and el-
lipticity of the discrete functional GN (·; 0).
Theorem 3.2. For any (v, q) ∈ WN ×VN , there exists a constant C such that

1

C

(
‖v‖2

Ḣ1(Ω)
+ ‖q‖2H1(Ω)

)
≤ GN (v, q; 0) ≤ C

(
‖v‖2

Ḣ1(Ω)
+ ‖q‖2H1(Ω)

)
.

Using the same technique for a generalized Galerkin method given in [2]

and [26], one may easily obtain the spectral convergence in [Ḣ1(Ω)]2 ×H1(Ω)
for the proposed method in the following theorem. The similar results can be
found in [20] and [21].
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Theorem 3.3. Assume that the solution (u, p) of (3.1) is in
(
[Ḣs(Ω)]2∩W

)
×(

Ḣs(Ω) ∩ V
)
for some s ≥ 1 and f ∈ Ḣℓ(Ω) for some integer ℓ ≥ 2. Let

(uN , pN ) ∈ WN ×VN be the discrete solution of the problem (3.6). Then there

exists a constant C such that

‖u− uN‖Ḣ1(Ω) + ‖p− pN‖H1(Ω)

≤ C
[
N1−s(‖u‖Ḣs(Ω) + ‖p‖Ḣs(Ω)) +N−ℓ‖f‖Ḣℓ(Ω)

]
.

3.2. Least-squares of [H(div; Ω) × H
1(Ω)]-norm equivalence

In this subsection, we establish the pseudo-spectral least-squares method
whose homogeneous functional is equivalent to [H(div; Ω)×H1(Ω)]-norm.

Let Wdiv be a subspace of H(div; Ω) for vector functions:

Wdiv := {v ∈ [L2(Ω)]2 : ∇ · v ∈ L̇2(Ω), n · v = 0 on ΓN , [n · v]Γ = νg(y) }
equipped with the norm

‖v‖2
Wdiv = ‖v‖2L2(Ω) + ‖∇ · v‖2

L̇2(Ω)
.

Note that Wdiv ( H(div; Ω) and ‖v‖Wdiv = ‖v‖H(div;Ω) if ν = 0. Let

Wdiv
N = Wdiv ∩ [Q̇N ]2.

Introducing the flux variable u = a∇p, we have the first-order system of
linear equations equivalent to (1.1) such that

(3.7)





u− a∇p = 0 in Ω,
−∇ · u+ b · ∇p+ c0 p = f in Ω,

p = 0 on ΓD,
n · u = 0 on ΓN .

Define the least-squares functional for the system (3.7) as

(3.8) Gdiv(v, q; f) = ‖f +∇ · v − b · ∇q − c0 q‖2L̇2(Ω)
+ ‖v− a∇q‖2

L̇2(Ω)

for (v, q) ∈ Wdiv × V . The least-squares problem associated to (3.8) is then
to minimize the quadratic functional Gdiv(v, q; f) over Wdiv × V , and the
corresponding variational problem is to find (u, p) ∈ Wdiv × V such that

(3.9) b(u, p;v, q) = f(v, q) ∀ (v, q) ∈ Wdiv × V,

where the bilinear form b(·; ·) is given by

b(u, p;v, q) =
(
∇ · u− b · ∇p− c0 p, ∇ · v − b · ∇q − c0 q

)
L̇2(Ω)

+
(
u− a∇p, v − a∇q

)
L̇2(Ω)

and the linear form f(·) is given by

f(v, q) = −
(
f,∇ · v − b · ∇q − c0 q

)
L̇2(Ω)

.

Define, for ℓ = 1, 2,

Gdiv
ℓ (v, q; f) = ‖f +∇ · v − b · ∇q − c0 q‖2L2(Ωℓ)

+ ‖v − a∇q‖2L2(Ωℓ)
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so that

Gdiv(v, q; f) = Gdiv
1 (v, q; f) +Gdiv

2 (v, q; f).

The following theorem establishes the continuity and ellipticity of the bilinear
form b(·; ·) so that there exists a unique solution for the problem (3.9).

Theorem 3.4. For any (v, q) ∈ Wdiv × V , there exists a positive constant C
such that

1

C

(
‖v‖2

Wdiv + ‖q‖2H1(Ω)

)
≤ Gdiv(v, q; 0) ≤ C

(
‖v‖2

Wdiv + ‖q‖2H1(Ω)

)
.

Proof. The functional Gdiv
ℓ (·, ·; ·), i = 1, 2, is a special case of the general form

given in [9]. Using the similar argument given in [10] and Theorem 3.1, one
may easily show the conclusion. �

Define the discrete least-squares functional using the discrete spectral norm
as

(3.10) Gdiv
N (v, q; f) = ‖f +∇ · v − b · ∇q − c0 q‖2N + ‖v − a∇q‖2N

for (v, q) ∈ Wdiv
N ×VN . The discrete least-squares problem associated to (3.10)

is then to minimize the quadratic functional Gdiv
N (v, q; f) over Wdiv

N × VN and
the corresponding variational problem is to find (uN , pN ) ∈ Wdiv

N × VN such
that

(3.11) bN(uN , pN ;v, q) = fN (v, q), ∀ (v, q) ∈ Wdiv
N × VN ,

where the discrete bilinear form bN (·; ·) and linear form fN(·) are given by

bN(uN , pN ;v, q) =〈∇ · uN − b · ∇pN − c0 pN ,∇ · v − b · ∇q − c0 q〉N
+ 〈uN − a∇pN ,v − a∇q〉N

and

fN (v, q) = −〈f,∇ · v − b · ∇q − c0 q〉N .
Using similar arguments given in [20], one may easily show the following

theorem which shows the continuity and ellipticity of the discrete functional
Gdiv

N (·; 0).

Theorem 3.5. For any (v, q) ∈ WN ×VN , there exists a constant C such that

1

C

(
‖v‖2

Wdiv + ‖q‖2H1(Ω)

)
≤ GN (v, q; 0) ≤ C

(
‖v‖2

Wdiv + ‖q‖2H1(Ω)

)
.

The proposed method appears indeed as a generalized Galerkin method. We
have the following convergence result using the same techniques given in [2] and
[26].

Theorem 3.6. Assume that the solution (u, p) of (3.7) is in
(
[Ḣs(Ω)]2 ∩

Wdiv
)
×

(
Ḣs(Ω) ∩ V

)
for some s ≥ 1 and f ∈ Ḣℓ(Ω) for some integer ℓ ≥ 2.
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Let (uN , pN ) ∈ Wdiv

N ×VN be the discrete solution of the problem (3.11). Then
there exists a constant C such that

‖u− uN‖Wdiv + ‖p− pN‖H1(Ω)

≤ C
[
N1−s(‖u‖Ḣs(Ω) + ‖p‖Ḣs(Ω)) +N−ℓ‖f‖Ḣℓ(Ω)

]
.

Remark 3.7 (Chebyshev spectral collocation method). In this section,
we have investigated the least-squares Legendre spectral collocation method
for an elliptic equation with an interface. In [20] and [21], they provided the
least-squares Legendre and Chebyshev spectral collocation method for elliptic
equations without any interface. One may easily explore the Chebyshev spec-
tral least-squares method using the similar arguments given in [20]. Lemma
4.1 through Lemma 4.3 of [20] can play important roles in the analysis of the
Chebyshev pseudo-spectral approximation for the interface problem (1.1).

4. Implementation and numerical results

4.1. Implementation

The computation for the problems (3.6) and (3.11) can be easily imple-
mented by using one-dimensional pseudo-spectral matrix and tensor product
for both Legendre and Chebyshev pseudo-spectral approximations. See [20] for
more details. Here, we briefly introduce an easy way to control the interface
conditions imposed in the solution spaces WN and Wdiv

N . A similar technique
can be found in [28].

Interface conditions I

Scalar variable

    p=[p
1
:p

2
] ∈  H1

    p
1
 = p

2
  on  Γ

Ω
1 Ω

2

Γ

Vector variable

u=[u
1
:u

2
] ∈  W

(u
1
 − u

2
) ⋅ n = ν g(y) on Γ

a−1 (u
1
 − u

2
) × n = 0 on Γ

Figure 1. Decomposition of domain Ω and interface conditions when ν = 0.

In the solution space WN , we have the following interface conditions:

[n · u]Γ = νg(y) and [τ · a−1u]Γ = 0,

where u = [u1 : u2] with ui = u|Ωi
and ui = (ui1, u

i
2)

T for each i = 1, 2. Since
n|Ω1

= (1, 0) and τ |Ω1
= (0, 1), one may see the following jump conditions for

both components:

u21 = u11 − νg(y) and u22 = (a2/a1)u
1
2 on Γ,

where ai = a|Ωi
for each i = 1, 2. Then, we can consider the discontinuous

high-order approximation with interface conditions.
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We introduce an easy technique to impose the jump condition into the alge-
braic system for the case of only one variable problem. Consider the following
problem:

(4.1) Find u = [u1 : u2] ∈WN such that d(u, v) = (f, v) ∀ v ∈WN

with a known jump condition:

(4.2) u2 = αu1 − h(y) on Γ,

where WN is a finite dimensional space and d(·, ·) is a bilinear form.
Suppose that the resulting algebraic system for the problem (4.1) based on the
discontinuous high-order approximation is

AU :=




A11 A12 : A13 A14

A21 A22 : A23 A24

· · · · · · : · · · · · ·
A31 A32 : A33 A34

A41 A42 : A43 A44







û1I
û1Γ
· · ·
û2Γ
û2I



=




f̂1
I

f̂1
Γ

· · ·
f̂2
Γ

f̂2
I



,

where, for each ℓ = 1, 2, ûℓI denotes the vector containing all nodal values of
uℓ except nodal values on Γ and ûℓΓ the vector containing the nodal values of

uℓ only on Γ. Let ĥΓ be the vector containing the nodal values of the function

h(y). From the jump condition (4.2), we can replace û2Γ by α û1Γ − ĥΓ so that
we obtain the following reduced algebraic system:

Â Û :=



A11 A12 + αA13 A14

A21 A22 + αA23 A24

A41 A42 + αA43 A44





û1I
û1Γ
û2I


 =



f̂1
I +A13ĥΓ
f̂1
Γ +A23ĥΓ
f̂2
I +A43ĥΓ


 .

In this case, we cannot guarantee the symmetry of Â even though A is sym-
metric. To obtain a symmetric system, we add α times the third row-block to
the second row-block so that the matrix AS is symmetric if A is symmetric:

AS Û = F̂,

AS =




A11 A12 + αA13 A14

A21 + αA31
A22 + αA23

+A32 + αA33
A24 + αA34

A41 A42 + αA43 A44



, F̂ =




f̂1
I +A13ĥΓ

f̂1
Γ +A23ĥΓ

+α(f̂2
Γ +A33ĥΓ)

f̂2
I +A43ĥΓ



.

After we compute û1Γ, we set û
2
Γ = α û1Γ−ĥΓ. On the other hand, the conforming

approximation is nothing but only the case of α = 1 and h(y) = 0.
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4.2. Numerical results

In this section, we present the numerical experiments for the first-order
system (3.1) associated to the following elliptic partial differential equation
(1.1).

Example 1 (Discontinuous diffusion coefficient). Consider the following prob-
lem without the singular source term:

{
−∇ · (a∇p) + b · ∇p+ c0 p = f in Ω,

p = 0 on ∂Ω.

The discontinuous diffusion coefficient a(x, y) is given by

a(x, y) =

{
1, x ≤ 0,
σ, x > 0.

In this example, we present some numerical results with the following exact
solution

p(x, y) =





(
(σ − 2)(x+ 1)2 + (4− σ)(x + 1)

)
sin

(
π
2 (y + 1)

)
, x ≤ 0,(

− 3(x+ 1)2 + 7(x+ 1)− 2
)
sin

(
π
2 (y + 1)

)
, x > 0.

The right hand side f is given by the direct computation of the left hand side
with the solution p. One may easily see that p ∈ H2(Ω) and u = a(x, y)∇p ∈
[H1(Ω)]2, but u /∈ [H2(Ω)]2 when σ = 1. However, if σ 6= 1, then p ∈ H1(Ω)
and u ∈ W ⊂ Wdiv, but u /∈ [H1(Ω)]2. The numerical tests will be performed
with σ = 1 and 100. Let eu = u − uN and ep = p − pN be the discretization
errors where (uN , pN) is the approximate solution to (3.6) or (3.11).
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Figure 2. Legendre approximation of [Ḣ1 ×H1] FOSLS (σ = 1).
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Figure 3. Legendre approximation of [Ḣ1 ×H1] FOSLS (σ = 100).

Figures 2 and 3 show the numerical solutions for σ = 1 and σ = 100, respec-
tively. One may see that the second component of flux variable u has a big jump
in Figure 2. Tables 1 through 6 show that the proposed method has spectral
convergence in [Ḣ1(Ω)]2×H1(Ω)-norm of pseudo-spectral Legendre/Chebyshev
collocation least-squares method for both variables p and u, regardless of co-
efficients a, b and c0. One may compare the numerical results with those
of the least-squares finite element approximations in [13] and negative norm
least-squares pseudo-spectral approximations in [22]. The numerical results

show that the pseudo-spectral approximations of both [Ḣ1 ×H1]-FOSLS and
[Hdiv × H1]-FOSLS have very good performances similarly. Comparing Le-
gendre approximations in Tables 1 and 4 with Chebyshev approximations in
Tables 3 and 6, the discretization errors for Legendre approximation are a little
bit smaller than those of Chebyshev approximation, but the difference seems
to be very small.

Table 1. Legendre approximation of [Ḣ1 ×H1] FOSLS (σ = 1).

b c0 N ‖ep‖L2(Ω) ‖ep‖Ḣ1(Ω) ‖eu‖L2(Ω) ‖eu‖Ḣ1(Ω)

0 0 3 2.035e-02 5.016e-02 2.978e-01 1.654e+00
7 8.725e-07 7.438e-06 1.200e-04 1.834e-03
11 1.191e-11 1.764e-10 5.416e-09 1.376e-07
15 2.259e-14 6.507e-14 3.743e-13 8.796e-12

0 −10 3 7.123e-02 2.123e-01 4.283e-01 1.719e+00
7 1.287e-05 9.123e-05 1.212e-04 1.793e-03
11 1.308e-10 1.899e-09 5.405e-09 1.371e-07
15 2.558e-13 9.092e-13 9.152e-13 7.961e-12

(6, 9) 0 3 5.567e-02 2.248e-01 3.662e-01 1.900e+00
7 5.622e-06 4.530e-05 1.182e-04 1.785e-03
11 1.411e-10 1.556e-09 5.544e-09 1.478e-07
15 7.516e-13 2.510e-12 2.601e-12 2.315e-11
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Table 2. Legendre approximation of [Hdiv ×H1] FOSLS (σ = 1).

b c0 N ‖ep‖L2(Ω) ‖ep‖Ḣ1(Ω) ‖eu‖L2(Ω) ‖eu‖Ḣ1(Ω)

0 0 3 1.806e-02 4.417e-02 2.414e-01 9.662e-01
7 5.107e-07 4.128e-06 4.842e-05 7.549e-04
11 5.227e-12 7.104e-11 1.482e-09 4.896e-08
15 2.872e-14 7.890e-14 4.104e-13 1.489e-11

0 −10 3 3.892e-02 1.044e-01 3.126e-01 9.789e-01
7 6.172e-06 4.045e-05 5.154e-05 7.554e-04
11 4.365e-11 5.695e-10 1.488e-09 4.891e-08
15 2.056e-13 7.366e-13 7.382e-13 1.619e-11

(6, 9) 0 3 3.770e-02 1.678e-01 3.818e-01 1.851e+00
7 3.164e-05 1.141e-04 1.652e-04 1.835e-03
11 9.781e-11 9.795e-10 4.495e-09 1.297e-07
15 1.815e-13 7.798e-13 1.161e-12 2.892e-11

Table 3. Chebyshev approximation of [Ḣ1 ×H1] FOSLS (σ = 1).

b c0 N ‖ep‖L2(Ω) ‖ep‖Ḣ1(Ω) ‖eu‖L2(Ω) ‖eu‖Ḣ1(Ω)

0 0 3 8.839e-02 2.921e-01 6.130e-01 3.657e+00
7 1.065e-05 1.578e-04 2.064e-04 3.660e-03
11 2.145e-10 7.000e-09 9.750e-09 2.834e-07
15 1.194e-12 5.879e-12 8.825e-12 1.586e-10

0 −10 3 8.194e-02 3.899e-01 7.478e-01 3.839e+00
7 3.087e-05 2.472e-04 2.171e-04 3.545e-03
11 3.341e-10 8.088e-09 9.680e-09 2.822e-07
15 6.706e-12 2.959e-11 3.167e-11 1.475e-10

(6, 9) 0 3 1.735e-01 5.956e-01 6.448e-01 3.532e+00
7 1.271e-05 1.748e-04 2.333e-04 3.908e-03
11 2.879e-10 7.591e-09 1.051e-08 3.175e-07
15 1.328e-12 9.310e-12 1.119e-11 1.579e-10

Table 4. Legendre approximation of [Ḣ1 ×H1] FOSLS (σ = 100).

b c0 N ‖ep‖L2(Ω) ‖ep‖Ḣ1(Ω) ‖eu‖L2(Ω) ‖eu‖Ḣ1(Ω)

(6, 9) 0 3 2.785e-01 1.508e+00 2.292e+01 1.136e+02
7 1.789e-04 1.006e-03 4.253e-03 6.156e-02
11 1.732e-09 1.928e-08 1.289e-07 4.208e-06
15 5.845e-12 2.384e-11 7.609e-11 8.485e-10

(6, 9) −10 3 8.181e-01 3.628e+00 2.293e+01 1.130e+02
7 7.024e-04 3.663e-03 7.081e-03 6.661e-02
11 5.322e-09 4.109e-08 1.347e-07 4.195e-06
15 1.928e-12 1.060e-11 3.683e-11 7.908e-10
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Table 5. Legendre approximation of [Hdiv ×H1] FOSLS (σ = 100).

b c0 N ‖ep‖L2(Ω) ‖ep‖Ḣ1(Ω) ‖eu‖L2(Ω) ‖eu‖Ḣ1(Ω)

(6, 9) 0 3 3.397e+00 1.410e+01 5.257e+01 2.020e+02
7 3.343e-04 3.341e-03 1.400e-02 1.884e-01
11 3.613e-09 6.489e-08 4.222e-07 1.120e-05
15 1.247e-11 5.684e-11 1.796e-10 1.465e-09

(6, 9) −10 3 6.141e+00 2.523e+01 7.534e+01 2.640e+02
7 7.475e-04 4.987e-03 1.541e-02 1.956e-01
11 4.031e-09 7.097e-08 4.250e-07 1.122e-05
15 3.787e-11 1.672e-10 4.180e-10 2.231e-09

Table 6. Chebyshev approximation of [Hdiv ×H1] FOSLS (σ = 100).

b c0 N ‖ep‖L2(Ω) ‖ep‖Ḣ1(Ω) ‖eu‖L2(Ω) ‖eu‖Ḣ1(Ω)

(6, 9) 0 3 5.690e+00 3.388e+01 1.066e+02 4.086e+02
7 9.437e-04 1.408e-02 3.386e-02 4.948e-01
11 1.129e-08 3.519e-07 1.104e-06 3.374e-05
15 2.492e-10 1.967e-09 5.490e-09 2.981e-08

(6, 9) −10 3 8.257e+00 4.890e+01 1.399e+02 5.056e+02
7 2.161e-03 2.202e-02 4.509e-02 5.592e-01
11 1.353e-08 3.691e-07 1.121e-06 3.381e-05
15 1.052e-09 7.688e-09 1.888e-08 8.210e-08

Example 2 (Discontinuous diffusion coefficient with a singular source term).
Let Ω = (0, L) × (0, 1) and Γ = {α} × (0, 1). Consider the following elliptic
problem with the singular source term:

−apxx − pyy + u = f + νδα(x) sin πy in Ω,

p = 0 on ∂Ω,

with the following exact solution

p(x, y) = sinπy ·
{

C1 cos(xγ1) + C2 sin(xγ1) + 1, x ∈ (0, α),
C3 cos(xγ2) + C4 sin(xγ2) + 1, x ∈ (α,L),

where {
a1 = 100,
a2 = 10,

{
γ1 = 1/10,

γ2 = 1/
√
10,

{
α =

√
10π/6,

L =
√
10π/2.

In this example, Ci can be determined by the homogeneous boundary con-
ditions and the jump conditions, a1∂xp− a2∂xp = ν sinπy on Γ, and the right
hand side f can also be given by easy computation of the left hand side with
solution p. With two sub-domains, Ω1 = (0, α)×(0, 1) and Ω2 = (α,L)×(0, 1),
we applied least-squares pseudo-spectral collocation method to solve the above
singular problem as an interface problem.

Figures 4 and 5 show the numerical solutions for ν = 5 and ν = −5, respec-
tively. One may see that the first component of flux variable u has big jumps
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in Figures 4 and 5. Tables 7 through 10 show that we have the spectral con-
vergence in [Ḣ1(Ω)]2 × H1(Ω)-norm of pseudo-spectral Legendre/Chebyshev
collocation least-squares method for both variables p and u, regardless of
ν. The tables also show that the numerical results are very similar for both
[Ḣ1×H1]-FOSLS and [Hdiv×H1]-FOSLS. Comparing Legendre approximation
with Chebyshev approximation, the discretization errors for Legendre approx-
imation are a little bit smaller than those of Chebyshev approximation like the
previous example.
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Figure 4. Legendre approximation of [Ḣ1 ×H1] FOSLS (ν = 5).
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Figure 5. Legendre approximation of [Ḣ1 ×H1] FOSLS (ν = −5).
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Table 7. Legendre approximation of [Ḣ1 ×H1] FOSLS.

ν N ‖ep‖L2(Ω) ‖ep‖Ḣ1(Ω) ‖eu‖L2(Ω) ‖eu‖Ḣ1(Ω)

5 2 4.232e-02 1.311e-01 6.361e-01 2.472e+00
6 9.690e-06 1.088e-04 2.664e-04 3.728e-03
10 2.267e-10 4.597e-09 1.519e-08 3.783e-07
14 8.847e-15 1.135e-13 6.599e-13 1.162e-11

−5 2 1.035e-01 3.196e-01 1.942e+00 7.013e+00
6 2.473e-05 2.959e-04 1.169e-03 1.655e-02
10 7.953e-10 1.704e-08 6.366e-08 1.503e-06
14 2.835e-14 4.628e-13 2.425e-12 5.178e-11

Table 8. Legendre approximation of [Hdiv ×H1] FOSLS.

ν N ‖ep‖L2(Ω) ‖ep‖Ḣ1(Ω) ‖eu‖L2(Ω) ‖eu‖Ḣ1(Ω)

5 2 5.072e-02 1.572e-01 7.268e-01 2.825e+00
6 1.552e-05 2.013e-04 5.343e-04 1.052e-02
10 4.649e-10 1.027e-08 3.726e-08 1.607e-06
14 1.046e-14 1.651e-13 9.781e-13 4.445e-11

−5 2 1.150e-01 3.550e-01 2.133e+00 7.708e+00
6 3.543e-05 4.646e-04 1.738e-03 2.845e-02
10 1.344e-09 3.024e-08 1.149e-07 3.772e-06
14 2.903e-14 5.092e-13 2.927e-12 1.068e-10

Table 9. Chebyshev approximation of [Ḣ1 ×H1] FOSLS.

ν N ‖ep‖L2(Ω) ‖ep‖Ḣ1(Ω) ‖eu‖L2(Ω) ‖eu‖Ḣ1(Ω)

5 2 2.083e-02 8.893e-02 4.611e-01 2.430e+00
6 1.361e-05 1.404e-04 4.404e-04 6.128e-03
10 3.797e-10 7.757e-09 2.901e-08 7.820e-07
14 8.215e-14 9.542e-13 5.717e-12 9.221e-11

−5 2 8.653e-02 3.669e-01 2.185e+00 1.042e+01
6 3.888e-05 4.320e-04 1.770e-03 2.451e-02
10 1.404e-09 2.898e-08 1.002e-07 2.380e-06
14 2.380e-13 2.722e-12 2.143e-11 3.236e-10

Table 10. Chebyshev approximation of [Hdiv ×H1] FOSLS.

ν N ‖ep‖L2(Ω) ‖ep‖Ḣ1(Ω) ‖eu‖L2(Ω) ‖eu‖Ḣ1(Ω)

5 2 3.634e-02 1.551e-01 7.181e-01 3.656e+00
6 2.751e-05 3.225e-04 9.054e-04 1.967e-02
10 8.603e-10 1.855e-08 5.990e-08 3.014e-06
14 6.908e-14 1.041e-12 6.873e-12 1.787e-10

−5 2 1.116e-01 4.735e-01 2.615e+00 1.253e+01
6 6.338e-05 7.709e-04 2.757e-03 4.894e-02
10 2.448e-09 5.247e-08 1.732e-07 6.706e-06
14 2.725e-13 2.744e-12 1.973e-11 5.217e-10
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5. Conclusion

This paper develops least-squares pseudo-spectral collocation methods for
elliptic boundary value problems (1.1) having interface conditions given by
discontinuous coefficients and singular source term. From the discontinuity
of coefficients and singular source term, we derived the interface conditions
and then we imposed such interface conditions to solution spaces. Over such
solution spaces, we define two types of continuous least-squares functionals
using L̇2(Ω)-norm, so-called ‘broken L2(Ω)-norm’. We also define two types of
discrete least-squares functionals using discontinuous spectral norm over two
sub-domains. In this paper, we have shown that both types of the homogeneous
continuous and discrete least-squares functionals are equivalent to appropriate
product norms and the proposed methods have the spectral convergence in
the broken norms. Finally, we presented some numerical results to provide
evidences for analysis and spectral convergence of our proposed methods. The
techniques given in this paper can be further combined with the finite element
method and spectral element method. It can be also applied to more general
interface problems.
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