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Abstract

Unlabeled examples are easier and less expensive to obtain than labeled exam-
ples. Semisupervised approaches are used to utilize such examples in an effort to boost
the predictive performance. This paper proposes a novel semisupervised classification
method named transductive least squares support vector machine (TLS-SVM), which
is based on the least squares support vector machine. The proposed method utilizes
the difference convex algorithm to derive nonconvex minimization solutions for the
TLS-SVM. A generalized cross validation method is also developed to choose the hy-
perparameters that affect the performance of the TLS-SVM. The experimental results
confirm the successful performance of the proposed TLS-SVM.

Keywords: Difference convex algorithm, generalized cross validation function, kernel
trick, least squares support vector machine, semisupervised learning, transductive least
squares support vector machine.

1. Introduction

Classifiers can be informative or discriminative. Classical linear discriminant analysis is
the most popular informative method and logistic regression is a popular discriminative
method. In general, logistic regression is more robust than linear discriminant analysis be-
cause it relies on fewer assumptions about the classes. An important advantage of logistic
regression is that it outputs an estimate of the probability that an object belongs to each of
the possible classes. In recent years, there have been many new and exciting developments
in kernel-based learning, particularly with regard to discriminative classification. The new
developments have been largely stimulated by the research of Vapnik (1995, 1998) on sta-
tistical learning theory and support vector machines (SVM). Of all the kernel machines, the
least squares SVM (LS-SVM) is the most appealing and promising method (Suykens and
Vanderwalle, 1999; Suykens, 2000). Its strong point is that it solves linear equations, en-
abling computations to be performed in a simple, time-saving manner. Suykens et al. (2002)
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achieved a great performance with the LS-SVM on several benchmark data set problems.
Their results highlight the potential of the LS-SVM as a promising research tool. Model
selection, which is the process of determining the optimal hyperparameters such as the ker-
nel and regularization parameters, is a central issue in the task of fitting kernel machines.
The goal of model selection is to identify the model that will yield the best generalization
performance. Another advantage of the LS-SVM over a standard SVM is that it provides
an easy model selection method called the generalized cross validation (GCV) function.

In classification problems, the label indicates the category or subpopulation to which
the corresponding data belong. Most classification methods rely on the availability of large
labeled data because the predictive performance improves as the volume of training data
increases. In practice, there are many reasons why it is not always possible to obtain an
example that consists solely of labeled data. To overcome this problem, Blum and Mitchell
(1988) proposed a so called co-training algorithm to combine labeled and unlabeled data.
Since then, researchers have studied semisupervised learning principle such as margin based
learning (Vapnik, 1998; Wang et al., 2007) and graph based method (Blum and Chawla,
2001; Zhu et al., 2003). For recent readings, we can refer Chapelle et al. (2008), Xu et
al. (2011) and Zhu and Goldberg (2009). Semisupervised methods use large amounts of
unlabeled data with small amounts of labeled data, and the empirical results confirm that
unlabeled data can be used to significantly improve the predictive performance. Recently,
Seok (2012, 2013) applied semisupervised method to regression problem.

Transductive SVM (TSVM) introduced by Vapnik (1998) was originally designed to as-
sign the labels of unlabeled data. TSVM seeks the largest margin hyperplane using both
labeled and unlabeled data and yields good performance (Joachims, 1999; Chen et al., 2002).
The cost function of TSVM is appropriate but the implementation of TSVM is inadequate
(Chapelle and Zien, 2005; Astorino and Fuduli, 2007). To treat this issue, Wang et al. (2007)
developed the nonconvex minimization routine of TSVM based on the difference convex (DC)
programming (An and Tao, 1997). Their algorithm gives better performance.

In order to utilize the strong points of the LS-SVM in the fields on the semisupervised
learning literature, Adankon et al. (2009) proposed a semisupervised LS-SVM and Zhang
et al. (2009) proposed least square transduction SVM. The simulation results in several
benchmarks of their proposed algorithm yield that the methods can exploit unlabeled data
to give good performance. However though their objective functions that are nonconvex are
appropriate to use both labeled and unlabeled data, the algorithms to solve the objective
functions are inadequate to solve nonconvex problem. Furthermore, the hyperparameters
including kernel and regularization parameters are chosen by heuristic method that is not
objective. To overcome nonconvex problem we derive a novel algorithm for learning a trans-
ductive LS-SVM for semisupervised learning. We utilize the DC algorithm to solve a non-
convex minimization of a negative objective function of the TLS-SVM. A GCV method is
also developed in this paper to choose the hyperparameters that affect the performance of
the TLS-SVM. The experimental results with real and synthetic data confirm the successful
performance of the proposed TLS-SVM.

The rest of this paper is organized as follows. Section 2 reviews the LS-SVM and the
GCV function. Section 3 solves the TLS-SVM with the DC algorithm. Section 4 presents
some numerical studies that indicate the performance of the TLS-SVM. Section 5 contains
conclusion and discussion.
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2. LS-SVM

Since LS-SVM classification is actually equivalent to LS-SVM regression for binary re-
sponse {-1,1}, we review LS-SVM regression in this section. Given a training data set
{xi, yi}ni=1 with each input xi ∈ Rd and corresponding output yi ∈ R, we consider the
following optimization problem in primal weight space:

L(w, b, e) =
1

2
w′w +

C

2

n∑
i=1

e2
i

subject to equality constraints

yi = w′φ(xi) + b+ ei, i = 1, · · · , n,

where C > 0 is a regularization parameter and φ(·) is a feature mapping function which
maps the input space into a higher dimensional space. It is well known that φ(xi)

′φ(xj) =
K(xi,xj), which are obtained from the applicaion of Mercer (1909). The cost function with
squared error and regularization corresponds to a form of ridge regression. To find minimizers
of the objective function, we can construct the Lagrangian function as follows:

L(w, b, e;α) =
1

2
w′w +

C

2

n∑
i=1

e2
i −

n∑
i=1

αi(w
′φ(xi) + b+ ei − yi)

where αi’s are the Lagrange multipliers. Then, the conditions for optimality are given by

∂L

∂w
= 0 → w =

n∑
i=1

αiφ(xi),

∂L

∂b
= 0 →

n∑
i=1

αi = 0,

∂L

∂ei
= 0 → ei =

1

C
αi, i = 1, · · · , n,

∂L

∂αi
= 0 → yi − b−w′φ(xi)− ei = 0, i = 1, · · · , n.

After eliminating w and ei’s, we could have the solution by the following linear equations[
K + 1

C I 1
1′ 0

] [
α
b

]
=

[
y
0

]
, (2.1)

where 1 is an n× 1 vector of 1’s and I is an n× n identity matrix.
By solving the linear equations (2.1), we obtain the solution

α = (K +
1

C
I)−1(y − b1) and b =

1′(K + 1
C I)−1y

1′(K + 1
C I)−11

.

In particular, for the given training data set, we obtain the classifier

sign(f) = sign(Kα+ b1),
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where f = (f(x1), · · · , f(xn))′ can be expressed as the linear combination of yi’s as follows:

f = Hy.

Here H = [ K 1 ]
[

S11

S21

]
where

[
S11

S21

]
is the (n+ 1)× n submatrix of the inverse of the

leftmost matrix S of (2.1) such that S−1 =
[

S11 S12

S21 S22

]
.

The functional structures of LS-SVM is characterized by the hyperparameters - regular-
ization parameter and kernel parameter. To choose optimal values of hyper- parameters of
the model we define a leave-one-out (LOO) cross validation (CV) function as follows:

CV (θ) =
1

n

n∑
i=1

(yi − f (−i)
i )2,

where θ is a set of hyperparameters, that is, kernel and regularization parameters, and f
(−i)
i

is the estimate of yi without the ith observation. Ordinary cross validation (OCV) function
is obtained by applying the LOO lemma (Craven and Wahba, 1979) as follows:

OCV (θ) =
1

n

n∑
i=1

(
yi − fi
1− hii

)2

,

where hii = ∂fi/∂yi is the ith diagonal element of H. The GCV function is obtained as
follows:

GCV (θ) =
n
∑n

i=1(yi − fi)2

(n− trace(H))2
.

Among the candidates of sets of hyperparameters, we choose the optimal values of hyper-
parameters which minimize the OCV function or the GCV function.

3. Transductive LS-SVM

In the semisupervised learning, a labeled data set (X1,y1) = {xi, yi}n1
i=1 is observed

together with an independent unlabeled data set X2 = {xj}n1+n2
j=n1+1. The TLS-SVM uses an

idea of minimizing the objective function given the labeled data set and the unlabeled data
set as follows:

l(f) =
1

2
‖f‖2H +

C1

2

n1∑
i=1

(y1i − fi)2 +
C2

2

n1+n2∑
j=n1+1

(sign(fj)− fj)2,

which is equivalent to

l(f) =
1

2
‖f‖2H +

C1

2

n1∑
i=1

(y1i − fi)2 +
C2

2

n1+n2∑
j=n1+1

(1− |fj |)2, (3.1)

where fi = f(xi) = w′φ(xi) + b and H is a reproducing kernel Hilbert space of a kernel K.
Here l(f) is not a convex function of f since u(f) = (1 − |f |)2 is not a convex function of
f . We decompose u(f) into u(f) = u1(f)− u2(f) where u1(f) = f2 and u2(f) = −1 + 2|f |
as shown in Figure 3.1, where u1(f) and u2(f) are convex functions of f .
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Figure 3.1 Plots of u1, u2 and u = u1 − u2 for the DC decomposition

Using this we construct a DC decomposition to utilize the DC algorithm as follows:

l(f) = l1(f)− l2(f),

where l1(f) = 1
2‖f‖

2
H + C1

2

∑n1

i=1(y1i − fi)2 + C2

2

∑n1+n2

j=n1+1 f
2
j and l2(f) = C2

2

∑n1+n2

j=n1+1(1−
2|fj |). Given the decomposition, the DC algorithm solves a sequence of minimization prob-
lems,

l(f) = l1(f)− f ′Ol2(f (k)),

where Ol2(f (k)) is a gradient vector of l2(f) at f (k). l(f) in (3.1) can be expressed in terms
of w , b and e as follows:

L(w, b, e)=
1

2
w′w+

C1

2

n1∑
i=1

e2
i +

C2

2

n1+n2∑
j=n1+1

e2
j−w′φ(X2)O(k−1)

2 −b1′2φ(X2)O(k−1)
2 (3.2)

subject to the equality constraints

yi −w′φ(xi)− b = ei, i = 1, · · · , n1 and w′φ(xj) + b = ej , j = n1, · · · , n1 + n2,

where φ(X2) = (φ(xn1+1), · · · , φ(xn1+n2
)) and O(k−1)

2 = sign(f
(k−1)
n1+1 , · · · , f

(k−1)
n1+n2

)′. To find
minimizers of the objective function (3.2), we can construct the Lagrangian function as
follows:

L(w, b, e) =
1

2
w′w +

C1

2

n1∑
i=1

e2
i +

C2

2

n1+n2∑
j=n1+1

e2
j −w′φ(X2)O(k−1)

2 − b1′2φ(X2)O(k−1)
2

−
n1∑
i=1

αi(ei − yi +w′φ(xi) + b)−
n1+n2∑
j=n1+1

αj(ei −w′φ(xj)− b),
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where 1k is an nk×1 vector of 1’s and αi’s are the Lagrange multipliers. Then, the conditions
for optimality are given by

∂L

∂w
= 0 → w =

n1∑
i=1

αiφ(xi)−
n1+n2∑
j=n1+1

αjφ(xj) + φ(X2)O(k−1)
2

∂L

∂b
= 0 →

n1∑
i=1

αi −
n1+n2∑
j=n1+1

αj + 1′2O
(k−1)
2 = 0

∂L

∂ei
= 0 → ei =

1

C1
αi, i = 1, · · · , n1

∂L

∂ej
= 0 → ej =

1

C2
αj , j = n1 + 1, · · · , n2

∂L

∂αi
= 0 → ei − yi +w′φ(xi) + b = 0, i = 1, · · · , n1

∂L

∂αj
= 0 → ej −w′φ(xi)− b = 0, j = n1 + 1, · · · , n1 + n2

After eliminating w and ei’s, we have the solution by the following linear equations, K11 + 1
C1
I1 −K22 11

−K21 K22 + 1
C2
I2 −12

1′1 −1′2 0

[ α
b

]
=

 y1 −K12O
(k−1)
2

K22O
(k−1)
2

1′2O
(k−1)
2

 , (3.3)

where Kij = K(Xi,Xj) and Ik is an nk × nk identity matrix for i, j, k = 1, 2. Thus,
estimation procedure of TLS-SVM with the DC algorithm is given as follows:

(i) Set initial value of (f
(0)
n1+1, · · · , f

(0)
n1+n2

)′ from pre-estimation with labeled data as the
training data and unlabeled data as the test data.

(ii) At (k+1)st iteration, find (α(k+1), b(k+1)) from (3.3) with O(k)
2 =C2sign(f

(k)
n1+1, · · ·, f

(k)
n1+n2

)′,

where (f
(k)
n1+1, · · · , f

(k)
n1+n2

)′ =
[

K21

−K22

]
α(k) +K22O

(k)
2 + b(k).

(iii) Iterate (ii) until |L(α(k+1), b(k+1))− L(α(k), b(k))| < tol.

Finally, for a given test data xt the nonlinear TLS-SVM function becomes

f(xt) =

n1∑
i=1

K(xt,xi)αi −
n1+n2∑
j=n1+1

K(xt,xj)αj +

n1+n2∑
j=n1+1

K(xt,xj)O2,j−n1 + b. (3.4)

At kth iteration, we define the LOO-CV function as follows:

CV (θ) =
1

n1

n1∑
i=1

(y1i − f (−i)
i )2,

where θ is a set of hyperparameters, that is, kernel and regularization parameters, and

f
(−i)
i is the estimate of y1i obtained from (3.3) and (3.4) with (X1,y1) and X2 except the
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ith observation for i = 1, · · · , n1. By applying the LOO lemma and the first order Taylor
expansion, we have

y1i − f (−i)
i ≈ y1i − fi

1− h1,ii
, i = 1, · · · , n1,

where h1,ii = ∂fi/∂y1i, i = 1, · · · , n1, is the ith diagonal element of H1 such that

f1 = [K11,−K12,11]

[
S11

S21

]
y1 + [K11,−K12,11]S−1

 −K12

K22

1′2

O(k)
2

= H1y1 +H2O
(k)
2 , (3.5)

where
[

S11

S21

]
is the (n1 + n2 + 1) × n1 submatrix of the inverse of the leftmost matrix S

of (3.3) such that S−1 =
[

S11 S12

S21 S22

]
. From (3.5) the OCV function for the TLS-SVM is

obtained as follows:

OCV (θ) =
1

n1

n1∑
i=1

(
yi − fi

1− h1,ii

)2

.

By replacing h1,ii with trace(H1)/n1, the GCV function is obtained as follows:

GCV (θ) =
n1

∑n1

i=1(yi − fi)2

(n1 − trace(H1))2
.

4. Numerical studies

The performance of the proposed TLS-SVM is illustrated through the use of simulated
data sets and real data sets.

Example 4.1 The performance of the TLS-SVM is compared with the LS-SVM and the
semisupervised LS-SVR (S2LS-SVR; Xu et al., 2011). The S2LS-SVR is simple to im-
plement since it solves quadratic problem like the LS-SVM. As usual, LS-SVM does not
use the unlabeled data. To compare we generate 100 data sets, in which yi is generated
from a Bernoulli distribution with p = 0.5, x1i and x2i are independently generated from
N(yi, 1), i = 1, · · · , 400. In each data set, 100 instances are randomly selected for training,
and the remaining 300 instances are retained for testing. Among the training data, 80 unla-
beled data are obtained by removing labels from a randomly chosen subset of the training
data, whereas the remaining 20 training data are treated as labeled. We used the Gaussian
kernel, K(x1, x2) = exp( 1

s2 ||x1 − x2||2) for the TLS-SVM, the LS-SVM and the S2LS-SVM.
To obtain the optimal value of the hyperparameter, we used the OCV functions instead of
the GCV functions due to the small size of the labeled data. Figure 4.1 shows values of the
LOO-CV function, the OCV function and the GCV function for various values of s2 in Gaus-
sian kernel and (C1, C2) = (100, 1). It shows that the OCV yields a more similar minimizer
than that of the GCV. The average of 100 mean misclassification errors and their standard
errors for the the TLS-SVM as (0.1428, 0.000684), (0.1738, 0.000743) for the LS-SVM and
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(0.1736, 0.000729) for the S2LS-SVM. These results imply that the TLS-SVM has better
capabilities than the LS-SVM or the S2LS-SVM and are shown in Figure 4.2. The better
performance of the TLS-SVM is due to the fact that it acquires more information well from
the unlabeled data.
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Figure 4.1 Values of LOO-CV function, OCV function and GCV function
for various values of kernel parameters in Example 4.1
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Figure 4.2 Scatter plots of a training data (left) and box plots of misclassification error rates
of 100 test data sets in Example 4.1 (right)

Example 4.2 Five benchmark data sets - Wisconsin Breast Cancer, Ionosphere, Iris of
Virginia and Setosa, Mushroom, Pima Indians Diabetes- are obtained from the UCI Machine
Learning Repository (http://archive.ics.uci.edu/ml/). Each data set is randomly divided into
halves for training and testing, where 20% of training data are labeled and 80% are unlabeled.
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We repeated 100 times to obtain the average of 100 misclassification errors of test data as
well as the estimated standard error. We also obtain the average of 100 misclassification
errors of test data of LS-SVM, where labeled data alone are used as the training data.
The optimal values of (C1, C2) and Gaussian kernel parameter are obtained from OCV
function. The results are summarized in Table 4.1, which indicate that TLS-SVM yields
better performance than LS-SVM and S2LS-SVM in all data sets. Especially the error rate
0.0209 for Mushroom data is much less than 0.0903 and 0.0941 for LS-SVM’s and S2LS-
SVM’s. The superiority of TLS-SVM may be due to the DC minimization strategy, where
the DC property of the cost function has been effectively applied.

Table 4.1 Results of five data sets in Example 4.2 (standard error in parenthesis)

data size kernel TLS-SVM LS-SVM S2LS-SVM
Brcancer 683 linear 0.0842 (0.0018) 0.0883 (0.0019) 0.0850 (0.0018)

Ionosphere 351 Gaussian 0.3351 (0.0039) 0.3389 (0.0028) 0.3489 (0.0021)
Iris 100 Gaussian 0.2246 (0.0149) 0.2795 (0.0137) 0.2905 (0.0136)

Mushroom 8124 Gaussian 0.0209 (0.0002) 0.0903 (0.0005) 0.0941 (0.0005)
Pima 768 linear 0.2857 (0.0012) 0.2903 (0.0013) 0.2860 (0.0013)

5. Conclusions

In this paper, we implemented a semisupervised classification method with the TLS-SVM,
which is based on an LS-SVM. We utilized the difference convex algorithm to derive noncon-
vex minimization problem for the TLS-SVM. The proposed TLS-SVM is specially important
in classification problems in which it is impossible to obtain fully labeled data. The experi-
mental results show that the proposed TLS-SVM outperforms the LS-SVM and the S2LS-
SVM. Thus, the feasibility of using the proposed TLS-SVM for semisupervised classification
problems is confirmed. A multiclass TLS-SVM will be considered in future work.
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