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Time Series Regression Model
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Abstract

The least squares method is usually applied when estimating the parameters in the
regression models. However the least square estimator is not very efficient when the
distribution of the error is skewed. In this paper, we propose the asymmetric least
square estimator for a particular nonlinear time series regression model, and give the
simple and practical sufficient conditions for the strong consistency of the estimators.

Keywords : Asymmetric least squares estimators, Strong consistency, Nonlinear time series
regression models. '

1. Introduction

Generally, the nonlinear regression model is
yi=Rx,0¢) +e, t=1,2,...,n

TP is a(1Xpy)

where Ax, 0y)is a real valued nonlinear function defined on R”
observed vector, the error term ¢, are independent and identically distributed (1id.) with zero
mean and finite variance. The parameter vector &, which is interior point in a parameter
space OC R’ is unknown and to be estimated.

The least squares method still plays a central role in the estimation of parameter Gy in the

nonlinear regression models. The nonlinear least squares estimation problem is defined as :
Find the parameters which minimize

QA0 = By —Ax, )2
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A measurable function &, for which Q,(8,)= 1nf_ Q,(8) is called a least squares
fe O
estimator (LSE) for the parameter 6 based on the observations v, t=1,2,...,n Here 6

denotes the closure of the set @. Jennrich(1969) first rigorously proved the existence and
measurability of the LSE and showed the consistency and asymptotic normality of the LSE

9/,, under the several assumptions. Wu(1981) gave some sufficient conditions such as a

Lipschitz type condition on the sequence A x, #) to prove the asymptotic properties of the

LSE 7,

The concept of periodicity in time series is of fundamental interest, since i1t provides a
means for formalizing the notions of dependence or correlation between adjacent points. In this
paper we think about a sum of sinusoidal components

f(x,, 60) == 121 {AroCOS(CI),Ot) + B,Osin(a),ot)},

where 6y= (A, By 0y, ", Ag, By, wg) for ¢=1, Ay, By's are some fixed unknown

constants, is unknown frequency lying between 0 to 7 (1<7<gq) and in this case the
observed value x, means {. But the above formula does not satisfy Jennrich(1969)'s

assumption nor Wu(1981)’s Lipschitz type condition, the previous method to gain the LSE is
not available. Walker(1971) obtained the asymptotic properties of an approximate LSE.
Recently, Kundu(1993) and Kundu and Mitra(1996) gave the direct proof of consistency of the
LSE.

On the other hand, in spite of the theoretical and practical merits, a certain criticisms of
procedures based on the least squares methods in the past have been pointed to the
robustness even a single outlier of a slighter departure from the normality assumption on the
errors. When the distribution of error is skewed, the LSE is judged inadequate. In many
applied regression problem the distribution of errors is skewed, hence an alternative to
ordinary LSE methods such as asymmetric least squares( ALS ) method is considered (Newey
& Powell 1987).

For that reason, we study the ALS which will be defined in (1.2) of the following

nonlinear time series regression model with some assumptions,

(L) vi= 2A 0 c08(0,ud) + Brysin(w,d] + .

The ALS of the true parameter 6y= (A, By, i, ", Agp,By, wg ) denoted by
3’;=( 711\,,, 1/31\,, 5;,,---, 71;1, E;l, 5;1) is a vector value which minimizes the objective
function

1.2) R, (6 ;r)=—711 z:lpr(y,— ZI[A,cos(w,t)-{-B,sin(w,t)]),

where 0<¢K1, 8=(A., By, »;,"",A,,B,,w,) and p.is a check function which is defined
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by the formula

0 ) =lr—TI)IA% 1) is the indicate function
2{(1—r)/12, A<0
wA?, A=0.

In this paper, we will study the strong consistency of the Asymmetric Least Squares
Estimators for the nonlinear time series regression model (1.1).

2. The Strong Consistency

Firstly, for the case ¢=1, i.e. for the one harmonic component, we will consider the strong
consistency of the nonlinear ALS 8,= 8,,=( 4, By, w,=(A4,, B, o, for
0y= (A, By, wy)=(Ay, By, wp) in a time series with stationary independent residuals

model (1.1) with the following assumptions.

Assumption A
The parameter space ®= K X KX[(, n], where K is compact subspace of F.

Assumption B
B1: {e,} are iid. continuous random variables which have distribution function G(e;) and

probability density function g(e,).
B2: E (&%) < oo for all ¢
B3: We define 7 as

(1-2 fimetg(et) de;+ rfome,g(e,) de, =0,
where fdG(et)= fg(e,) d(ep).

0 o
Note that in B3, if we define a= E(g), b= f_we,g(e,) de,, ¢c= fo c,8(e,) dey, then

(1—-9b+ rc=(1—0Db+ t(a—b=0, r= 2bﬁg= bfc'

Now we define the new object function :

Q.(0;t)=R,(6;7)—R,(0g;7).
Since R ,(8y;7) is constant for 6, so if we define @, as a minimizer of Q ,(8;7), it is
also a minimizer of R ,(6;7).

The main tools in the proof of the strong consistency of ALS 9\" are the following two

lemmas.
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Lemma 2.1 Suppose that Assumptions A and B are satisfied on the model (1.1).
Then @ ,(0;1) converges to XO;t) uniformly for all 8 in © and almost surely, where

Q05 ) = lim ELQ (0 2)].

Proof : A proof of Lemma 2.1 is included in Appendix.

Lemma 2.2 Suppose that Assumptions A and B are satisfied on the model (1.1).
Then @(0;7) has the unique minimizer 6, in @ .

Proof : Also, a proof of Lemma 2.2 is included in Appendix.

From the results of Lemma 2.1 and Lemma 2.2, we conclude the following main result.

Theorem 2.3 Under the same conditions of the Lemma 2.1 and Lemma 2.2, we have ﬁ\n
converges to 6, almost surely.
Proof : The above Lemma 2.1 and Lemma 2.2 are the sufficient conditions of White(1980)

for the strong consistency of estimators, we know that ?\n converges to @, almost surely.

Also for several harmonic component case, i.e. ¢> 1 , by the same process in Lemma 2.1
and Lemma 2.2, we found out @ ,(8;7) converges to Q(8;7) almost surely, and at least
0y is a local minimizer of (#;r). But for the several harmonic components, we need some
additional condition. It must be imposed to keep the w, from being too close together and thus
prevent estimators of two angular frequencies from converging in probability to the same

value. So the required condition is

. min
(2.1 }ggo 1< r+s<q

we can also prove the fact Q(6&;8) >0, for 0+d, and (fy;r)=0, by the same

(Hw,—w])=0o

calculation for the ¢ = 1 . Therefore we can state the result as the following Theorem.

Theorem 2.4 Under the same assumptions of Theorem 2.3 and with the condition (2.1),

the ALS (/9\,, is a strongly consistent estimator of 8.
Appendix ; Proofs of Lemmas

Proof of Lemma 2.1 : We can rewrite the new object function @ ,(6€;7) as follows

Q.(8;1)= R,(0;7)— R, (0y;7)
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= —% IZI [IT'— I{y,(Acosa)t+ Bsinwt}l {yt— (ACOS([)t+ Bsma)t)} 2
- |T— I {yi< Aq coswyt+ Bosinwot}' {yt_ (AO CcoSs Cl)()l“i‘ BO sin wot)}z ]
1
= & 2 I Lcaw e d )P =le= Tl &2,

where d{6) = (Acoswt+ Bsinwt) —(A jcosw yt+ Bysinw ). And we let
Xt= |T— I(g,(d,(&))l(et_ dt( 0))2_ I z'_I(e,<0)l etzy

then
t(2e,— d () —d(0), e=2d[0), €20
(A1) x,=|TdD—12ed(0)+Qr=Dei, e2d(6), <0
¢ [(l—z')df(ﬁ) - (1-026,d(O+(1-20D6, &,{dL0), =0
(1=(2e; —d(D)N—d(0)), e:< d{(0), 0.
Thus
1X,| < le.—d (DAL < (le] +1dL D) |dL O
or

X < ldt(0)|2+2 le: | 1dL O +|5t(9)|2'
Also, we know that E(&?) < o by assumption B2. Thus |X,| < o and E(X,) < co.
Using Kolmogorov’'s SLLN, we conclude that

tZl Xt B ZIE(Xt)

n

— ( almost surely, as n — <.

Therefore, we have @ ,(8;7) converges to @;7) almost surely.

Proof of Lemma 2.2 :
We can reduce the form of E (X,) as follows :

EX)= (1-9 [ f_df)e?dG(s,)— [ _etdcte)—2d,(0) f_d:j)e,dG(e,)
+d(0) [ _d:j)dG(e,)]
t ool edGle)~ [ edGley~24(0) [, edGle)
+d0) f;)dc(et)].

If d{8 >0 then we obtain the following formula :
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d(6)

d{8)
EX)= (=0l [ d6(e)—24(6) [ edGle)+d0G(dL6)]

N vz-[ B fod,(ﬁ)

Using the Mean Value Theorem,
4.6

fo elg(e)d(e) = A (O)(d;(0))d(6) < o for some d;(O)<[0,d,(O)].

ldGe) ~2d/0) [, edGle) + dH(0) 1~ G(a(oN)].

On the other hand,
d(8) .

(l—r)f_oo Sth(ét)+de°:9)€th(€t)
af6) Vo a(6)
e dG(e) +1{ f_we,dG(et)—f_w edG(e)]

=(1-0] _

d(8)

~(1-20 [ edGle)+ tEle)
= (1—-20{K(d(0)) — K(—0)} + tE(e)),

where K is the indefinite integral of ¢,g(e,). Since E (&%) < oo , we have

EX)= (1-20[dX0)a(di(0)dL0) + d(0)G(dL6))
—2d(D{K(dL(0)— K(—0)}]

+ 7d%(0) — 2d,(0)cE(e))

{ oo,

For the case of d{8)<0,
d[6)

(l—r)f_m sth(et)Jrrf;g)eth(et)
0 Ioo a8
=(1—-0 f_ooe,dG(e,)-i—rfo e,dG(et)—F(l—Zz')fO cdG(ey).

Also, using the Mean Value Theorem, for some d;' (8)=[d,(8),0], we have the same

result E(X, < oo.
Using the fact that

Tif d{ 8) = cos wt, T%— d{0) = sinwt, % d{(8)=— Atsin wt+ Btcos wt,
then we have followings :
—2 G(d,(6) = &(d(0)) cosot, —= G(d,(0) = g(d(O)) sina,
% G(d{6)) = g(d,(8))(— Atsinwt+ Btcos wb),
and
2 K(d,(0)) = d{(0)g(d,(0)) coswt, — K(d,(6))= d{(0)g(d,(6))sinat,
76;)— K(d(0) = d,(0)g(d,(6))(— Atsinwi+ Btcos wb).

So we gain followings
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Sy

L B1Q(6:0] =L 33 cos (120 [d}X(6) e(d}(6)) d(0) +2d/(6) G(d L 0))

— d3(6) 2(d/(6)) ~ 2 {K(d(6)) — K(— 00)}]+ 2 d{ 6) — E(e)]),
S HQ.(89] =L 3 sinwr(1-20 [d7% (D& di()d 6) +2d,(6) G(d( )

t=1

— d2(0) g(dL0)) — 2 {K(d{8)) — K(— o)} + 2 d{ 6) — E(e )]},

o

S+

—% EQ.(60] = 71{ ZS — Atsinwt+ Bicosod) (1 —20) [d2(6) &(d(8)d ,(6)

+2d/(0)G(d, () — d*(8) g(d{ )
—2{K(d(6)) — K(—00)}]+2:d(§) — E(e)]}.

Now, note that
_d_ A=l S1_09_ 1 _0d_
T ELQ(6:0] = B EX) =~ B X

and

a4 o {Zz'cosa)t[dt(ﬁ)—e,], if &,>df(0),
A 201~ Dcoswi d,(O) — e, if &< dL8).

Then,

3 af6)
Bl5x X= 20050l (1-0 [ d(0)dG(e)+z [, d(0)dG(e)

d{6)

(-9 [ edoleytef " edole.
Since d{8)=f(0)—f(8))=0 at 6,=(A,, By, wy), and by the assumption B3,

A2 x)| = 2ol (1-0) [ _edlle)+ [ edGle)]=0.
=6, —o 0

Then we obtain the result

_a_ . -

= Q(H,r)‘g = lim aaE[Qn(ﬁ r)]lg_o (0,0,0).
Now, if we define [a(#)]3x3 and P[d;(6)] as follows

9°E[Q (6 D]
0696

[a( n)] 3><3=

6=108,

and

A d(0)]=261d,(0)]-2d,(O)Gld ()]~ di(0) ad(@) GLd(O)].

Then, we know that :

PEQ] 1
0AJ0A n
I’EQ] 1
0BIA 2

cos 2wt {(1—20) P[d,(0)]1+ 27},

I

=

Z; sin2wt {(1—20PLd,(8)]+2r)

n i

o,

f
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2
agf)[a%l] 2—11,;(——1;1 t=1tsin2wt+B§:1tcoszwt) {(1-20Hd,(0)]+27},
a_a%[(?QBA =—;1¢ ,=1Sin20)f {(1-20Pd, ()] +27},

2
%%ﬁ]— =—711(—A Z}tsmzwt+—§ Z&tsinZwt) {(1—-20Pd,(0)]+ 27},
———35[32,"] =71¢ 2. (— Atsinot+Bteos wt)” {(1—20)PLd ()] +2¢).

Since d{(6y) =0, P(d{6§;)) = P(0)=2G(0)+0o(1). Let Sy=(1—27)2G(0)+ 2z,

then we have following results when #n — oo:

2
almy =TI L 5% cosoutl(1 - 20 M 0)] + 20) = S+ o)
2
a(n)zz=—‘92—%[§;—% o= 2 sin (1= 20 PLY(6p)] +26) = S+ o)
a(n)33=%]— 0=00=—111 Zl(—Aotsinw0t+BOtcoswot)2=SO+0(1).

Now, for the simplicity of [a(#)]3x3 consider the following facts:

2apti _ —2wtt

._]-. =—]‘ ——e _ Pl
n Zl cos (2wy?) n Zjl 2 o(1).
Similarly, —}1 t=lsin(2(u0t)= o(1), and so we have
1 2 1 1 2o, 1
” Zlcos Wt =" So+ o(1), A Sin‘opt== Soto(l) ,
and,
_11¢ t=1(—A0tsinw0t+Botcoswot)z
=A§—711 Z}ltzsin 2w0t— AOBO—}; thzsr'chuot+ Bg—}i Z}ltzcos 2a)oz‘.
Ai+ B2
So, }%a(n)gxf—%Sﬁo(l).

Likewise the above processes, we obtain the results, when n#— o0 :
_ -1l ~ -
a(n)p=a(n)y = £ Cos wptsin wytSy == o(1),
a(n)p=aln)y= —712( — Ay Zl tcos wotsin 2wyt + B tzl tcos 2wt Sy,

Then, _;11 a( n) 13— Ti Boso + 0( 1) .

a(n)pn=a(n)y= —}1 (— A, gl tsin 2wyt+ By Z‘ tcoswytsin *wyh)S,.
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Then, L a(n)y= 71 AySy+o(1).

Hence, if we apply above results, we get

_1_ _ Aoso
g5 0 4
. 9* oy 2 1 BySy
lim| 559 EL@(ED]] _ ~=lm»" 0 5 S0 1
BySy _ AcSy (Aj+BS
; 4 4 6
) S 3 7 ]
_ 220 o 2 2

and we have the leading principal minors are positive. Thus [@(#)]3x3 is positive-definite.

So, we can conclude that at least #, is a local minimizer of @& 7). Next we will show that

@, is the global minimizer of (& 7). Since Q& 1) = lim—}e tzlE(X ), and by the simple

calculations of X, in (A1), E(X,) >0, that implies @Q(&7) >0, for 8+68, And we also
have Q8yu0)=R,(8p;0)—R,(0y;7)=0. That is Q(61)=0 at =0, and Q&) >0 for
all 8+68, Thus @ is also the global minimizer of (8, 7).

References

[1] Jennrich, R., Asymptotic properties of nonlinear least squares estimations, Ann. Math.
Stat., 40, (1969), 633-643.

[2] Koenker, R. and Bassett, G, Regression Quantiles, Econometrica, 73, (1978), 618-621.

[3]1 Kundu, D. Asymptotic Theory of Least Squares Estimator of a particular nonlinear
regression model, Statistics and Probability Letters, 18, (1993), 13-17.

(4] Kundu, D. and Mitra, A., Asymptotic Theory of Least Squares Estimator of a nonlinear
time series regression model, Communication in Statistics—Theory, 23(1), (1996),
133-141.

[5] Tae Soo Kim, Hae Kyoung Kim and Seung Hoe Choi, Asymptotic Properties of the LAD
Estimators of a Nonlinear Time Series Regression Model, Journal of the Korean
Statistical Society, 29, 2, (2000), 187-199.

[6] Walker, A. M., On the Estimation of a Harmonic Component in a Time Series with
Stationary Independent Residuals, Biometrica, 58, (1971), 21-36.

[7] White, H., Nonlinear regression on cross-section data, Econometrica, 43, (1980), 721-746.

[8] Whitney K. Newey and James L. Powell, Asymmetric Least Squares Estimation and
Testing, Econometrica, 4, (1987), 819-847.

[9] Wu, C. F., Asymptotic Theory of nonlinear least squares estimation, The Annals of
statistics, 9. (1981), 501-513.



