• Title/Summary/Keyword: Lead free Solder

Search Result 199, Processing Time 0.022 seconds

Fluxless Plasma Soldering with Different Thickness of UBM Layers on Si-Wafer (Si 웨이퍼의 UBM층 도금두께에 따른 무플럭스 플라즈마 솔더링)

  • 문준권;강경인;이재식;정재필;주운홍
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.373-378
    • /
    • 2003
  • With increasing environmental concerns, application of lead-free solder and fluxless soldering process have been taken attention from the electronic packaging industry. Plasma treatment is one of the soldering methods for the fluxless soldering, and it can prevent environmental pollution cased by flux. On this study fluxless soldering process under $Ar-H_2$plasma using lead free solders such as Sn-3.5 wt%Ag, Sn-3.5 wt%Ag-0.7 wt%Cu and Sn-37%Pb for a reference was investigated. As the plasma reflow has higher soldering temperature than normal air reflow, the effects of UBM(Under Bump Metallization) thickness on the interfacial reaction and bonding strength can be critical. Experimental results showed in case of the thin UBM, Au(20 nm)/Cu(0.3 $\mu\textrm{m}$)/Ni(0.4 $\mu\textrm{m}$)/Al(0.4 $\mu\textrm{m}$), shear strength of the soldered joint was relatively low as 19-27㎫, and it's caused by the crack observed along the bonded interface. The crack was believed to be produced by the exhaustion of the thin UBM-layer due to the excessive reaction with solder under plasma. However, in case of thick UBM, Au(20 nm)/Cu(4 $\mu\textrm{m}$)/Ni(4 $\mu\textrm{m}$)/Al(0.4 $\mu\textrm{m}$), the bonded interface was sound without any crack and shear strength gives 32∼42㎫. Thus, by increasing UBM thickness in this study the shear strength can be improved to 50∼70%. Fluxed reflow soldering under hot air was also carried out for a reference, and the shear strength was 48∼52㎫. Consequently the fluxless soldering with plasma showed around 65∼80% as those of fluxed air reflow, and the possibility of the $Ar-H_2$ plasma reflow was evaluated.

Standardization of Bending Impact Test Methods of Sn-Ag-Cu Lead Free Solder Ball (Sn-Ag-Cu계 무연 솔더볼 접합부의 굽힘충격 시험방법 표준화)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • An impact bending test method was used to evaluate the reliability for the solder joint of lead-free solder ball. In order to standardize the test method, the four point impact bending test was applied under the conditions of various frequencies and amounts of +/-amplitude respectively. Effects on the results were analysed. The optimum condition for impact bending test achieved in this study was the frequency of 10 Hz, and the amplitude of (+12/-1)~(+15/-1). 3 kinds of surface finishes Cu-OSP (Organic Solderability Preservative), ENIG (Electroless Nickel Immersion Gold), and ENEPIG (Electroless Nickel, Electroless Palladium, Immersion Gold) were used. Fracture surface showed that cracks were initiated and fractured along the intermetallic layer in the case of surface finishes of Cu-OSP and ENIG, while in the case of ENEPIG the cracks were initiated and propagated in the solder region.

The Fluxless Wetting Properties of UBM-Coated Si-Wafer to the Pb-Free Solders (UBM이 단면 증착된 Si-Wafer에 대한 Pb-free 솔더의 무플럭스 젖음 특성)

  • 홍순민;박재용;김문일;정재필;강춘식
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.74-82
    • /
    • 2000
  • The fluxless wetting properties of UBM-coated Si-wafer to the binary lead-free solders(Sn-Ag, Sn-Sb, Sjn-In, Sn0Bi) were estimated by wetting balance method. With the new wettability indices from the wetting curves of one side coated specimen, the wetting property estimation of UBM-coated Si-wafer was possible. For UBM of Si-chip, Au/Cu/Cr UBm was better than au/Ni/TI in the point of wetting time/ At general reflow process temperature, the wettability of high melting point solders(Sn-Sb, Sn-Ag) was better than that of low melting point one(Sn-Bi, Sn-In). The contact angle of the one side coated Si-plate to the solder could be calculated from the force balance equation by measuring the static state force and the tilt angle.

  • PDF

Lower Temperature Soldering of Capacitor Using Sn-Bi Coated $Sn-3.5\%Ag$ Solder (Sn-Bi도금 $Sn-3.5\%Ag$ 솔더를 이용한 Capacitor의 저온 솔더링)

  • Kim Mi-Jin;Cho Sun-Yun;Kim Sook-Hwan;Jung Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.61-67
    • /
    • 2005
  • Since lead (Pb)-free solders for electronics have higher melting points than that of eutectic Sn-Pb solder, they need higher soldering temperatures. In order to decrease the soldering temperature we tried to coat Sn-Bi layer on $Sn-3.5\%Ag$ solder by electroplating, which applies the mechanism of transient liquid phase bonding to soldering. During heating Bi will diffuse into the $Sn-3.5\%Ag$ solder and this results in decreasing soldering temperature. As bonding samples, the 1608 capacitor electroplated with Sn, and PCB, its surface was finished with electroless-plated Ni/Au, were selected. The $Sn-95.7\%Bi$ coated Sn-3.5Ag was supplied as a solder between the capacitor and PCB land. The samples were reflowed at $220^{\circ}C$, which was lower than that of normal reflow temperature, $240\~250^{\circ}C$, for the Pb-free. As experimental result, the joint of $Sn-95.7\%Bi$ coated Sn-3.5Ag showed high shear strength. In the as-reflowed state, the shear strength of the coated solder showed 58.8N, whereas those of commercial ones were 37.2N (Sn-37Pb), 31.4N (Sn-3Ag-0.5Cu), and 40.2N (Sn-8Zn-3Bi). After thermal shock of 1000 cycles between $-40^{\circ}C$ and $+125^{\circ}C$, shear strength of the coated solder showed 56.8N, whereas the previous commercial solders were in the range of 32.3N and 45.1N. As the microstructures, in the solder $Ag_3Sn$ intermetallic compound (IMC), and along the bonded interface $Ni_3Sn_4$ IMC were observed.

Pb-free Status and Strategy of Semiconductor Business in Samsung Electronics

  • Jeong Se-Young
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.79-92
    • /
    • 2004
  • RoHS compliant products are now being mass-produced. Eco-product(Pb-free+RoHS compliant+Halogen-free) will be possible from 2005. Pb-free flip chip will be qualified by 2004. 4Q. Lead Finish: SnBi-Under mass production Pd PPF-Under small production Matte Sn-will be internally qualified by 2004. 4Q Development of Pb-free Solder Ball: Stable Supply, Cost Down.

  • PDF

Analysis of Void Effects on Mechanical Property of BGA Solder Joint (솔더 접합부에 생성된 Void의 JEDEC 규격과 기계적 특성에 미치는 영향)

  • Lee, Jong-Gun;Kim, Kwang-Seok;Yoon, Jeong-Won;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.1-9
    • /
    • 2011
  • Understanding the void characterization in the solder joints has become more important because of the application of lead free solder materials and its reliability in electronic packaging technology. According to the JEDEC 217 standard, it describes void types formed in the solder joints, and divides into some categories depending on the void position and formation cause. Based on the previous papers and the standards related to the void, reliability of the BGA solder joints is determined by the size of void, as well as the location of void inside the BGA solder ball. Prior to reflow soldering process, OSP(organic surface preservative) finished Cu electrode was exposed under $85^{\circ}C$/60%RH(relative humidity) for 168 h. Voids induced by the exposure of $85^{\circ}C$/60%RH became larger and bigger with increasing aging times. The void position has more influence on mechanical strength property than the amount of void growth does.

Pb-FREE SOLDER PLATING

  • Yada, Y.;Tokio, K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.211-213
    • /
    • 1999
  • In the future, restrictions are likely to be imposed on the use of lead in the electronics industry. In dealing with such a move, we have been developing Pb-free Sn-Ag plating process to replace presently available Sn-Pb process. In this paper, the result of a basic comparison test between Sn-Pb plating and Sn-Ag plating is reported.

  • PDF

Board level joint reliability of differently finished PWB pad (PCB Pad finish 방법에 따른 solder의 Board level joint reliability)

  • Lee W. J.;Moon H. J.;Kim Y. H.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.02a
    • /
    • pp.37-59
    • /
    • 2004
  • In the case of Ni/Au finished pad on the package side, the solder joint of SnAgCu system can bring brittle fracture under impact load such as drop test. Therefore, it's difficult to prevent the brittle fracture of lead-free solder, by controlling Cu content. The failure locus existing on the interface between $(Ni,Cu)_3Sn_4\;and\;(Cu,Ni)_6Sn_5$ IMC layers must be changed to other site in order to avoid brittle fracture due to impact load. It was not found any clear evidence that there were two IMC layers exist. But it was strongly assumed these were two layers which have different Cu-Ni composition. From the above analysis it was assumed that Cu atom in the solder alloy or substrate seemed to affect IMC composition and cause to IMC brittle fracture.

  • PDF

Experimental and Numerical Study on Board Level Impact Test of SnPb and SnAgCu BGA Assembly Packaging (BGA Type 유.무연 솔더의 기계적 충격에 대한 보드레벨 신뢰성 평가)

  • Lim, Ji-Yeon;Jang, Dong-Young;Ahn, Hyo-Sok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.77-86
    • /
    • 2008
  • The reliability of leaded and lead-free solders of BGA type packages on a printed circuit board was investigated by employing the standard drop test and 4-point bending test. Tested solder joints were examined by optical microscopy to identify associated failure mode. Three-dimensional finite element analysis(FEM) with ANSYS Workbench v.11 was carried out to understand the mechanical behavior of solder joints under the influence of bending or drop impact. The results of numerical analysis are in good agreement with those obtained by experiments. Packages in the center of the PCB experienced higher stress than those in the perimeter of the PCB. The solder joints located in the outermost comer of the package suffered from higher stress than those located in center region. In both drop and bending impact tests, the lead-free solder showed better performances than the leaded solders. The numerical analysis results indicated that stress and strain behavior of solder joint were dependent on various effective parameters.

  • PDF

Activation Energy and Interface Reaction of Sn-40Pb/Cu & Sn-3.0Ag-0.5Cu/Cu (Sn-40Pb/Cu 및 Sn-3.0Ag-0.5Cu/Cu 접합부 계면반응 및 활성화에너지)

  • Kim, Whee-Sung;Hong, Won-Sik;Park, Sung-Hun;Kim, Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.8
    • /
    • pp.402-407
    • /
    • 2007
  • In electronics manufacturing processes, soldering process has generally been used in surface mounting technology. Because of environmental restriction, lead free solders as like a SnAgCu ternary system are being used widely. After soldering process, the formation and growth of intermetalic compounds(IMCs) are formed in the interface between solder and Cu substrate as follows isothermal temperature and time. In this studies, therefore, we investigated the effects of the Cu substrate thickness on the IMC formation and growth of Sn-40Pb/Cu and Sn-3.0Ag-0.5Cu/Cu solder joints, respectively. The effect of the Cu thickness in PCB Cu pad and pure Cu plate was analyzed as measuring of thickness of each IMC. After solder was soldered on PCB and Cu plate which have different Cu thickness, we measured the IMC thickness in solder joints respectively. Also we compared with the effectiveness of Cu thickness on the IMC growth. From these results, we calculated the activation energy.