• Title/Summary/Keyword: Layered structure

Search Result 1,138, Processing Time 0.048 seconds

A Study on Dynamic Stiffness of Multi-layered Damping Materials (완충재의 구성에 따른 동탄성계수 변화에 관한 연구)

  • Im, Jung-Bin;Chung, Jin-Yeon;Kim, Kyoung-Woo;Jeong, Gab-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1149-1152
    • /
    • 2007
  • Many kind of damping materials are generally used on concrete slab in apartment building to reduce floor impact noise level. Lately, multi-layered damping material that is consist of several materials are used to improve the effect of floor impact noise insulation. In this study, dynamic stiffness of multi-layered damping material that is consist of common materials such as expanded polystyrene(EPS), expended polyethylene(EPE), ethylene vinyl acetate(EVA) and polyester was investigated. It was found that dynamic stiffness of multi-layered damping material could be estimated if know value of each layer that compose whole structure. And it was found that dynamic stiffness of whole structure did not change even if change order that build layer.

  • PDF

Structural change of cobalt dodecanesulfate (Cobalt dodecanesulfate의 구조변화)

  • 허영덕;권석순;김지현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.2
    • /
    • pp.63-67
    • /
    • 2004
  • The layered structure of cobalt dodecanesulfate was synthesized. A phase transition takes place at various temperature ranges and results in a drastic change of the layer distance. A monolayer structure of cobalt dodecanesulfate at room temperature transformed to a bilayer structure as a dehydrated form at high temperature.

An Examination of an Efficient UI of Smartphone Home Screen Structure (스마트폰의 홈 화면구조에 따른 효율적 UI 방안 모색)

  • Choi, Jinhae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.437-446
    • /
    • 2017
  • Objective: This study aims to draw an efficient UI design by comparing the usability of App drawer and single-layered home screens, which are smartphone home screens. Background: Because smartphone home screen is frequently used including the installation, deletion, and editing of APPs, it should be designed with easily controllable information structure. There is a need to seek a user-friendly UI by comparing the usability of App drawer and single-layered home screens, of which methods to search Apps are different. There is also a need to examine an efficient UI and the factors to improve from the user perspective. Method: This study targeted 30 Android OS and iOS users to evaluate the App drawer and single-layered home screens, of which UI structures are different. Each participant was instructed to carry out an App searching task and App deleting task, and the execution time and the number of errors were measured. After the tasks were completed, they evaluated satisfaction through a questionnaire survey. Results: In the App searching task with low task level, there was no difference in execution level between the App drawer and single-layered home screens. However, the single-layered home screen showed higher efficiency and accuracy in the App deleting task with high task level. As for the group difference according to use experience, there was no difference in satisfaction among Android OS users, but iOS user satisfaction with single-layered home screen with which they were familiar was higher. Conclusion: As for home screen usability, the single-layered home screen UI structure can be advantageous, as task level is higher. Repulsion was higher, when users, who had used easier UI, used complex UI in comparison with user satisfaction, when users familiar with complex UI used easier UI. A UI indicating the current status with clear label marking through a task flow chart-based analysis, and a UI in which a user can immediately recognize by exposing hidden functions to the first depth were revealed as things to improve. Application: The results of this study are expected to be used as reference data in designing smartphone home screens. Especially, when iOS users use Android OS, the results are presumed to contribute to the reduction of predicted barriers.

Facile and Clean Synthetic Route to Non-Layered Two-Dimensional ZIF-67 Nanosheets

  • Choi, Chang-Ho
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.257-262
    • /
    • 2020
  • Two-dimensional (2D) metal organic framework (MOF) nanosheets (NSs) have recently gained considerable interest owing to their structural advantages, such as large surface area and exposed active sites. Two different types of 2D MOF NSs have been reported, including inherently layered MOFs and non-layered ones. Although several studies on inherently layered 2D MOFs have been reported, non-layered 2D MOFs have been rarely studied. This may be because the non-layered MOFs have a strong preference to form three-dimensionality intrinsically. Furthermore, the non-layered MOFs are typically synthesized in the presence of the surfactant or modulator, and thus developing facile and clean synthetic routes is highly pursued. In this study, a facile and clean synthetic methodology to grow non-layered 2D cobalt-based zeolitic imidazolate framework (ZIF-67) NSs is suggested, without using any surfactant and modulator at room temperature. This is achieved by directly converting ultrathin α-Co(OH)2 layered hydroxide salt (LHS) NSs into non-layered 2D ZIF-67 NSs. The comprehensive characterizations were conducted to elucidate the conversion mechanism, structural information, thermal stability, and chemical composition of the non-layered 2D ZIF-67. This facile and clean approach could produce a variety of non-layered 2D MOF NS families to extend potential applications of MOF materials.

Impact Absorption Performance of Multi-layered Composite Structures based on Material-Structure Optimization (소재-구조 최적화 기반 다층-복합재료구조 충격흡수성능)

  • Kim, Byung-Jo;Kim, Tae-Won
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.66-73
    • /
    • 2009
  • Total thickness, areal density and mass moment of inertia of materials are important material factors for structural characteristics. In this work, a material-structural optimization was performed up to the maximum ballistic limit of multi-layered composite structures under high impact velocity followed by the investigation of the influence of these factors on an impact absorption performance. A unified model combined with Florence's and Awerbuch-Bonder's models was used in optimizing the multi-layered composite structure consisting of CMC, rubber, aluminum and Al-foam. Total thickness, areal density and mass moment of inertia were used for the optimization constraint. As shown in the results, the ballistic limit determined from a newly developed unified model was closely similar to the finite clement analysis. Additionally, the ballistic limit and impact absorption energy obtained by the optimized structure were improved approximately 16.8% and 26.7%, respectively comparing with a not optimized multi-layered structure.

Facilitation of the four-mask process by the double-layered Ti/Si barrier metal for oxide semiconductor TFTs

  • Hino, Aya;Maeda, Takeaki;Morita, Shinya;Kugimiya, Toshihiro
    • Journal of Information Display
    • /
    • v.13 no.2
    • /
    • pp.61-66
    • /
    • 2012
  • The double-layered Ti/Si barrier metal is demonstrated for the source/drain Cu interconnections in oxide semiconductor thin-film transistors (TFTs). The transmission electromicroscopy and ion mass spectroscopy analyses revealed that the double-layered barrier structure suppresses the interfacial reaction and the interdiffusion at the interface after thermal annealing at $350^{\circ}C$. The underlying Si layer was found to be very useful for the etch stopper during wet etching for the Cu/Ti layers. The oxide TFTs with a double-layered Ti/Si barrier metal possess excellent TFT characteristics. It is concluded that the present barrier structure facilitates the back-channel-etch-type TFT process in the mass production line, where the four- or five-mask process is used.

3D Incident Wave Response of Structures on Layered Media (다층 반무한 지반-구조물계의 입사파 응답해석)

  • Kim, Moon-Kyum;Cho, Woo-Yeon;Koh, Jae-Pil
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.317-324
    • /
    • 1999
  • Dynamic interaction analysis of surface structure on layered half-space is performed in frequency domain under incident wave excitation. This present study adopts a coupling method that combines the finite element(FE) for the flexible structures and boundary element(BE) for the layered half-space. A semi-analytical approach is employed to reduce the integration range of wavenumbers in the BE formula. For the incident wave input, the response is decomposed and formulated after the impedance matrix for the structure system. Numerical examples are presented to demonstrate the accuracy of the method. The examples show the feasibility of an extended application to the complicated dynamic analysis of structures on layered media under incident wave excitation.

  • PDF

Implementation of the Optimized Via Structure on the Multi-Layered PCB (다층 인쇄회로 기판 (multi-layered PCB)에서의 최적 via 구조의 구현)

  • 김재원;권대한;김기혁;심선일;박정호;황성우
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.341-344
    • /
    • 2000
  • Several new via structures in printed circuit boards are proposed, fabricated and characterized in RF regime. The new structure with a larger inductance component in the bottom layer shows 3㏈ improvement over the conventional structure. The ADS simulation with model parameters extracted from 3D fie]d solver matches with the characterization of these vias

  • PDF

Processing of Vermiculite-Silica Composites with Prefer-Oriented Rod-Like Pores

  • Eom, Jung-Hye;Kim, Young-Wook;Lee, Seung-Seok;Jeong, Doo-Hoa
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.347-351
    • /
    • 2012
  • Vermiculite-silica composites with a layered structure were fabricated by adding cellulose fibers as a pore former and by a simple uniaxial pressing and subsequent sintering process. Three different combinations of additives were used and their effects on the compressive strength and thermal conductivity of the composites were investigated. Both compressive strengths (42-128 MPa) and thermal conductivities (0.75-1.48 $W/m{\cdot}K$) in the direction perpendicular to the pressing direction (T) were higher than those (19-81 MPa and 0.32-1.04 $W/m{\cdot}K$) in the direction parallel to the pressing direction (S) in all samples. The anisotropy in both properties was attributed to the microstructural anisotropy, which was caused by the layered structure developed in the composites.