DOI QR코드

DOI QR Code

Facilitation of the four-mask process by the double-layered Ti/Si barrier metal for oxide semiconductor TFTs

  • Received : 2011.12.27
  • Accepted : 2012.02.26
  • Published : 2012.06.30

Abstract

The double-layered Ti/Si barrier metal is demonstrated for the source/drain Cu interconnections in oxide semiconductor thin-film transistors (TFTs). The transmission electromicroscopy and ion mass spectroscopy analyses revealed that the double-layered barrier structure suppresses the interfacial reaction and the interdiffusion at the interface after thermal annealing at $350^{\circ}C$. The underlying Si layer was found to be very useful for the etch stopper during wet etching for the Cu/Ti layers. The oxide TFTs with a double-layered Ti/Si barrier metal possess excellent TFT characteristics. It is concluded that the present barrier structure facilitates the back-channel-etch-type TFT process in the mass production line, where the four- or five-mask process is used.

Keywords

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004). https://doi.org/10.1038/nature03090
  2. C. Tsai, T. Chang, S. Chen, I. Lo, S. Tsao, M. Hung, J. Chang, C. Wu, and C. Huang, Appl. Phys. Lett. 96, 242105 (2010). https://doi.org/10.1063/1.3453870
  3. D.-H. Cho, S.-H.K. Park, S. Yang, C. Byun, K.I. Cho, M. Ryu, S.M. Chung, W.-S. Cheong, S.M. Yoon, and C.-S. Hwang, IMID 2009 DIGEST 318 (2009).
  4. D. Kang, H. Lim, C. Kim, I. Song, Y. Park, and J.G. Chung, Appl. Phys. Lett. 90, 192101 (2007). https://doi.org/10.1063/1.2723543
  5. J. Park, J.K. Jeong, H.-J. Chung, Y.-G. Mo, and H.D. Kim, Appl. Phys. Lett. 92, 072104 (2008). https://doi.org/10.1063/1.2838380
  6. S. Morita, S. Yasuno, A. Miki, and T. Kugimiya, IDW'10, 2010, p. 755.
  7. S. Morita, S.Yasuno, A. Miki, and T. Kugimiya, IEICE trans. Electron. E94-C 11, 1739 (2011). https://doi.org/10.1587/transele.E94.C.1739
  8. T. Arai, N. Morisawa, K. Tokunaga, Y. Terai, E. Fukumoto, T. Fujimori, T. Nakayama, T. Yamaguchi, and T. Sasaoka, SID 10 Digest, Seattle WA, 1033 (2010).
  9. S. Lee and D.C. Paine, Appl. Phys. Lett. 98, 262108 (2011). https://doi.org/10.1063/1.3605589
  10. K. Nomura, T. Kyamiya, H. Ohta, M. Hirano, and H. Hosono, Appl. Phys. Lett. 93, 192107 (2008). https://doi.org/10.1063/1.3020714
  11. J. Park, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, K. Kim, S. Lee, K. Hong, J. Jung, E. Lee, K. Kwon, and Y. Park, Appl. Phys. Lett. 93, 053505 (2008). https://doi.org/10.1063/1.2962985
  12. I. Barin and O. Knacke, Thermochemical Properties of Inorganic Substances (Springer, Berlin, 1973), pp. 1-921.
  13. I. Barin, O. Knacke, and O. Kubaschewski, Thermochemical Properties of Inorganic Substances, Supplement (Springer, Berlin, 1977), pp. 1-861.
  14. G.V. Samsonov, Sankabutsu Binran [Physical and Chemical Properties of Oxides Directory], [in Russian], (Metallurgy, 1969), p. 165.
  15. P.S. Yun and J. Koike, J. Electrochem. Soc. 158, 10 H1034- H1040 (2011). https://doi.org/10.1149/1.3621723

Cited by

  1. High-Performance Low-Cost Back-Channel-Etch Amorphous Gallium-Indium-Zinc Oxide Thin-Film Transistors by Curing and Passivation of the Damaged Back Channel vol.5, pp.23, 2012, https://doi.org/10.1021/am404490t
  2. Low-frequency noise in amorphous indium-gallium-zinc oxide thin-film transistors with an inverse staggered structure and an SiO2gate insulator vol.53, pp.5, 2012, https://doi.org/10.7567/jjap.53.054201
  3. Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors vol.30, pp.2, 2012, https://doi.org/10.1088/0268-1242/30/2/024002
  4. Influence of Source and Drain Contacts on the Properties of Indium–Gallium–Zinc-Oxide Thin-Film Transistors based on Amorphous Carbon Nanofilm as Barrier Layer vol.7, pp.6, 2012, https://doi.org/10.1021/am5079682
  5. Ca-Doped CuO Diffusion Barrier for High-Performance a-IGZO Transistors With Cu-Based Source/Drain Material vol.65, pp.4, 2012, https://doi.org/10.1109/ted.2018.2806362
  6. Ultralow Voltage Driving Circuits Based on Coplanar a‐InGaZnO TFTs with Photopatternable Ionic Polymer Gate Dielectric vol.5, pp.10, 2019, https://doi.org/10.1002/aelm.201900359
  7. Role of MoTi diffusion barrier in amorphous indium-gallium-zinc-oxide thin-film transistors with a copper source/drain electrode vol.731, pp.None, 2021, https://doi.org/10.1016/j.tsf.2021.138759