KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.6
/
pp.2527-2545
/
2016
Measuring the similarity of given samples is a key problem of recognition, clustering, retrieval and related applications. A number of works, e.g. kernel method and metric learning, have been contributed to this problem. The challenge of similarity learning is to find a similarity robust to intra-class variance and simultaneously selective to inter-class characteristic. We observed that, the similarity measure can be improved if the data distribution and hidden semantic information are exploited in a more sophisticated way. In this paper, we propose a similarity learning approach for retrieval and recognition. The approach, termed as LDA-FEK, derives free energy kernel (FEK) from Latent Dirichlet Allocation (LDA). First, it trains LDA and constructs kernel using the parameters and variables of the trained model. Then, the unknown kernel parameters are learned by a discriminative learning approach. The main contributions of the proposed method are twofold: (1) the method is computationally efficient and scalable since the parameters in kernel are determined in a staged way; (2) the method exploits data distribution and semantic level hidden information by means of LDA. To evaluate the performance of LDA-FEK, we apply it for image retrieval over two data sets and for text categorization on four popular data sets. The results show the competitive performance of our method.
Construction accidents are difficult to prevent because several different types of activities occur simultaneously. The current method of accident analysis only indicates the number of occurrences for one or two variables and accidents have not reduced as a result of safety measures that focus solely on individual variables. Even if accident data is analyzed to establish appropriate safety measures, it is difficult to derive significant results due to a large number of data variables, elements, and qualitative records. In this study, in order to simplify the analysis and approach this complex problem logically, data preprocessing techniques, such as latent class cluster analysis (LCCA) and predictor importance were used to discover the most influential variables. Finally, the correlation was analyzed using an alluvial flow diagram consisting of seven variables and fourteen elements based on accident data. The alluvial diagram analysis using reduced variables and elements enabled the identification of accident trends into four categories. The findings of this study demonstrate that complex and diverse construction accident data can yield relevant analysis results, assisting in the prevention of accidents.
The purpose of the present study was to explore latent trajectory classes in the longitudinal change of depression measured using CES-D. The study data was extracted from the Korea Welfare Panel Study Data collected from 2006 to 2010. It consisted of 8,900 adults with aged over 19. Growth Mixture Modeling(GMM) was used to explore possible latent trajectory classes in the change of depression over time. The major findings of the present study were as follows. First, there were five latent trajectory classes in the longitudinal change of depression. Second, there were 4 latent trajectory classes of depression for people in a non-poverty group, while there were 3 latent trajectory classes of depression for people in a poverty group. These findings lead to three conclusions. First, 12.1% of the sample shows that their depression level increases over time. Second, the previous research findings of decreased depression over time might be caused by the combination of two latent trajectory classes(a low level depression sustain group and a depression decrease group). Lastly, the latent trajectory classes in the longitudinal change of depression, which are found in the present study, might be caused by interactions among depression, age, and poverty status.
Journal of rehabilitation welfare engineering & assistive technology
/
v.6
no.1
/
pp.83-87
/
2012
This study is aimed to identify latent classes which are based the change patterns in assistive technology device use among worker with disabilities and to test the effects of independent variables(gender, education, disability type, disability density, activity and participation of ICF: ICF, subjective socioeconomic status: SES, job satisfaction, life satisfaction) on determining latents classes. This study applied Nagin's(1999) semi-parametric group based approach to the panel survey of employment for the disabled. Because dependant variable has dichotomous scale, logit model was used. The results identified three latent classes, which could be defined based on the patterns as follows; assistive device continued use group, assistive device mid-level use group, assistive device sharp decline use group. The effects of the independent variables on the latent classes was tested by multinomial logit analysis. The results showed that education, disability type, ICF, SES, and life satisfaction were significant determinants of the latent classes. Finally, the implications based on analysis results were suggested.
An innovative method for separating overlapping latent fingerprints, using laser-induced plasma spectroscopy (LIPS) combined with multivariate analysis, is reported in the current study. LIPS provides the capabilities of real-time analysis and high-speed scanning, as well as data regarding the chemical components of overlapping fingerprints. These spectra provide valuable chemical information for the forensic classification and reconstruction of overlapping latent fingerprints, by applying appropriate multivariate analysis. This study utilizes principal-component analysis (PCA) and partial-least-squares (PLS) techniques for the basis classification of four types of fingerprints from the LIPS spectra. The proposed method is successfully demonstrated through a classification example of four distinct latent fingerprints, using discrimination such as soft independent modeling of class analogy (SIMCA) and partial-least-squares discriminant analysis (PLS-DA). This demonstration develops an accuracy of more than 85% and is proven to be sufficiently robust. In addition, by laser-scanning analysis at a spatial interval of 125 ㎛, the overlapping fingerprints were separated as two-dimensional forms.
Hyeong-A Jo;Seung-Joo Hyun;You-Seok Hyun;Yong-Hun Lee;Sun-Mi Kim;In-Cheol Baek ;Hyun-Jung Sohn;Tai-Gyu Kim
IMMUNE NETWORK
/
v.23
no.2
/
pp.17.1-17.16
/
2023
Latent membrane protein 2A (LMP2A), a latent Ag commonly expressed in Epstein-Barr virus (EBV)-infected host cells, is a target for adoptive T cell therapy in EBV-associated malignancies. To define whether individual human leukocyte antigen (HLA) allotypes are used preferentially in EBV-specific T lymphocyte responses, LMP2A-specific CD8+ and CD4+ T cell responses in 50 healthy donors were analyzed by ELISPOT assay using artificial Ag-presenting cells expressing a single allotype. CD8+ T cell responses were significantly higher than CD4+ T cell responses. CD8+ T cell responses were ranked from highest to lowest in the order HLA-A, HLA-B, and HLA-C loci, and CD4+ T cell responses were ranked in the order HLA-DR, HLA-DP, and HLA-DQ loci. Among the 32 HLA class I and 56 HLA class II allotypes, 6 HLA-A, 7 HLA-B, 5 HLA-C, 10 HLA-DR, 2 HLA-DQ, and 2 HLA-DP allotypes showed T cell responses higher than 50 spot-forming cells (SFCs)/5×105 CD8+ or CD4+ T cells. Twenty-nine donors (58%) showed a high T cell response to at least one allotype of HLA class I or class II, and 4 donors (8%) had a high response to both HLA class I and class II allotypes. Interestingly, we observed an inverse correlation between the proportion of LMP2A-specific T cell responses and the frequency of HLA class I and II allotypes. These data demonstrate the allele dominance of LMP2A-specific T cell responses among HLA allotypes and their intra-individual dominance in response to only a few allotypes in an individual, which may provide useful information for genetic, pathogenic, and immunotherapeutic approaches to EBV-associated diseases.
This study examined the patterns of coping strategies among Koreans during the early stage of the COVID-19 pandemic, explored the influence of demographic information (gender, age, economic level, household type), along with the unusual experiences due to COVID-19 (fear, stress of COVID, constraints of routine, income risk) on the classification of subclasses, and analyzed the latent profile differences in psychological wellbeing (life satisfaction, depression, and anxiety). An online survey was conducted among Korean Adults(n=600) between April 13, 2020 and 21, when WHO declared COVID-19 a global pandemic and Daegu as well as Gyeongsangbuk-do was nominated as a special disaster zone. First, Latent Profile Analysis (LPA) was used to identify subclasses of coping strategies and results suggested that the 4-class model had the best fit. Second, Class memberships were predicted by gender, age, economic level, as well as fear, stress, constraints of routine, and income risk, among the unusual experiences due to COVID-19. Finally, there are differences in psychological wellbeing among latent profiles. 'High level of adaptive coping group 3' showed the highest level of life satisfaction, 'Adaptive-maladaptive coping group 4' showed the highest level of depression, anxiety. Implications and suggestions are discussed based on the study results.
This study used laten class growth analysis to identify discrete developmental patterns of delinquent behaviors in adolescence. This present article also examined associations among these trajectories to determine how the development of delinquent behaviors relates to protective and risk factors, which include parental monitoring, attachment with parent, association with deviant peers, self-control, and negative stigma from others. Four-wave panel data from a Korea Youth Panel Study were used for the latent class growth model analysis. The sample consisted of 3,446 adolescents who were assessed at 4 measurement waves with approximately 1-year interval. Four trajectories of delinquent behaviors emerged: delinquency persistence, delinquency increaser, delinquency decreaser, normative group(almost no delinquent behaviors). Association with deviant peers had the most proximal strong influence on the probability of being in the delinquency increaser and delinquency persistence group compared, noed to the normative group. Parental monitoring, self-efficacy and negative stigma also differentiated the four delinquent behavior trajectories from one another after controllig for socio-demographic variables. The study suggested that there is a significant heterogeneity in the timing and change rate of delinquency progression. Adolescent delinquency prevention and intervention programs will need to consider this heterogeneity and enhance attention to protective and risk factors depending on the subpopulation.
This study was conducted to examine the latent classes in social exclusion and to analyse empirically the effects on the economic instability of old age by this type. And it also sought to look at whether the influence of old age anxiety varies with the subjective class consciousness of the elderly. Using the 14th data from the Korea General Social Survey (KGSS) in 2016, 1,041 adult males and females aged 18 years old were analyzed at the time of the survey. T-test, potential layer analysis (LCA), and multinomantic analysis of potential groups were conducted using the STATA14 and MPLUS 7 statistical programs. Finally, multi-regression analysis was performed to identify the moderate effect and effects among variables. According to the research, the types of social exclusion were three groups, followed by social exclusion group (49.3%), Multi-dimensional exclusion group (30.9%), and active social participation group (19.7%). The social exclusion group has the lowest possibility of economic, employment, and health exclusion, but the exclusion of formal and informal social activities seem to prominent, and the multi-dimensional exclusion group is more than 50% likely to experience exclusion in all areas. Active social participation are characterized by very active participation in informal social activities. By conducting multinominal logistic regression, it was observed that the social exclusion group included more young people than other groups, and that the multi-dimensional exclusion group included many elderly women without spouses. Finally, multiple regression analysis showed that social exclusion type interacts with subjective class consciousness and affects economic anxiety of old age.
IEIE Transactions on Smart Processing and Computing
/
v.4
no.4
/
pp.202-208
/
2015
In this study, we propose a new inference algorithm for a multiclass Gaussian process classification model using a variational EM framework and the Laplace approximation (LA) technique. This is performed in two steps, called expectation and maximization. First, in the expectation step (E-step), using Bayes' theorem and the LA technique, we derive the approximate posterior distribution of the latent function, indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. In the maximization step, we compute the maximum likelihood estimators for hyper-parameters of a covariance matrix necessary to define the prior distribution of the latent function by using the posterior distribution derived in the E-step. These steps iteratively repeat until a convergence condition is satisfied. Moreover, we conducted the experiments by using synthetic data and Iris data in order to verify the performance of the proposed algorithm. Experimental results reveal that the proposed algorithm shows good performance on these datasets.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.