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Abstract 
 

Measuring the similarity of given samples is a key problem of recognition, clustering, retrieval 

and related applications. A number of works, e.g. kernel method and metric learning, have 

been contributed to this problem. The challenge of similarity learning is to find a similarity 

robust to intra-class variance and simultaneously selective to inter-class characteristic. We 

observed that, the similarity measure can be improved if the data distribution and hidden 

semantic information are exploited in a more sophisticated way. In this paper, we propose a 

similarity learning approach for retrieval and recognition. The approach, termed as LDA-FEK, 

derives free energy kernel (FEK) from Latent Dirichlet Allocation (LDA). First, it trains LDA 

and constructs kernel using the parameters and variables of the trained model. Then, the 

unknown kernel parameters are learned by a discriminative learning approach. The main 

contributions of the proposed method are twofold: (1) the method is computationally efficient 

and scalable since the parameters in kernel are determined in a staged way; (2) the method 

exploits data distribution and semantic level hidden information by means of LDA. To 

evaluate the performance of LDA-FEK, we apply it for image retrieval over two data sets and 

for text categorization on four popular data sets. The results show the competitive performance 

of our method.  
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1. Introduction 

In the field of pattern recogntion, similarity measure lies in the focus of classification, 

clustering, retrieval and related problems. In real world applications, the most challenging 

work is to find a statisfied feature or similarity measure. For instance, for content based image 

retrieval, one of the most important components is the similarity measure [1,2,3,4,5]. It is 

worth noting that, similarity measure can be converted to distance measure and vice versa. 

Therefore, we do not distinguish the two notations and stick to similarity measure throughout 

this work. A similarity measure is composed of a feature space and a similarity function over 

the space, where the feature space is important because it should be robust the intra-class 

variance and selective to the inter-class attributes. For instance, for image recognition, an ideal 

feature is robust to illuminance, viewpoint and spatial scale, and selective to semantic content. 

The similarity function is defined upon the feature space, outputing large value for similar 

pairs and small value for dissimilar pairs. The most simple measure is the predefined measure, 

such as L2 distance [4]. This kind of measures are incapable to adapt data distribution [5] since 

they have no free parameter to tune. To improve the adaption ability to data distribution, 

similarity learning methods [3,6,7,8,9] have been proposed. In the perspective of exploiting 

class label, similarity learning methods are divided into unsupervised learning method and 

supervised learning method. In the pespective of deriving simiarity measure, learning methods 

fall to feature space learning and similarity function learning. 

Unsupervised similarity learning method seeks to find a feature space or a similarity 

measure for the training data set, without making use of class label. The methods include 

factorization methods [10], coding methods [6,7] and probabilistic model based methods 

[11,12,13,14,15,16]. In these methods, probablistic methods show promsing performance and 

are received increasing attention. They derive feature mappings [15] or similarity measures 

[11,12,13] based on the probabilistic models. Thus, they inherite the abilities of probabilistic 

model, e.g. adaptive to data distribution and capable to infer hidden information. These 

methods are particularly useful when the class label is missed or is expensive to otain. 

Supervised similarity learning methods [17,9,18] learn similarity measure by fitting data such 

that  similarity measure outputs large value for sample pair with the same labels and outputs 

small value for sample pair with distinct labels. Nevertheless, these methods do not fully 

exploit hidden information and data distribution which could improve the adaption ability and 

discrimination ability of similarity measure. As a further step, [19,20] exploit class label and 

probabilistic information simultaneously. However, they still can be further boosted through 

coupling with more sophisticated probabilstic models.  

To exploit data distribution, hidden information and class label for similarity learning, in 

this work, we propose a similarity learning approach based on latent Dirichlet allocation (LDA) 

[21] and free energy kernel (FEK) [15], which is referred to as LDA-FEK. The main 

motivation of this method is to exploit semantic information from LDA and class label which 

are informative [22,23] for similarity meassure. The method is compatible with bag-of-words 

represention for given data, where the words can be text words or visual words quantified from 

image descriptors, and feeds the word histograms to LDA for modelling. Then the free energy 

kernel is derived based on LDA, essentially being the function of model parameters and 

variables. To exploit class label, we develop a supervised learning approach for LDA-FEK, 

which, in technical perspective, tunes the kernel and LDA model to satisfy retreival or 

recognition performance. The proposed LDA-FEK and its learning method has two main 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 6, June 2016                                        2529 

advantages. First, it can adapt to data distribution, and is able to exploit semantic-level hidden 

information, i.e. hidden topic and mixture of topic. Second, the supervised learning method 

can tune the similarity and model according to the retrieval or recognition performance.  

The remaining part of this paper is organized as follows. Section 2 reviews the related 

works of similairty learning. Section 3 derives the LDA-FEK and the learning method. Section 

4 applies the proposed approach for retrieval and recognition, and experimentally evaluates it 

over several popular data sets. Section 5 draws a conclusion.  

2. Related Works 

A number of works have been contributed to similarity learning [24,25,26,27,28]. We in this 

work attempt to make a progress on the adaption ability and discrimination abillity of 

similarity measure. To do so, the posposed method, in technique perspective, should be 

supervised and probabilistic. In this section, we review supervised similarity learning methods 

which can be generally categorized into deterministic methods and stochastic methods.  

Deterministic similarity learning methods seek to learn similarity measures from the given 

data set such that the sample pair with the same label has high similarity while the pair with 

distinct label has low similarity, in a deterministic way. To achieve the purpose, some works 

[26,29,30] made use of equivalence constraints for pair within the same class, and 

inequivalence constraints for pair with the different classes. [26] casted the learning problem 

into a constrained convex optimization problem by minimizing the pairwise distance in the 

same classes. Discriminative component analysis (DCA) [30] incorporated equivalence 

constraints with component analysis. Similarly, [31] learned Mahalanobis distance subject to a 

set of pairwise constraints, i.e., must-links that associate images which must be in the same 

class and cannot-links that associate samples which must be in different classes. 

Also, numerous recent works introduced a variety of techniques for similarity learning 

Large-margin nearest neighbor (LMNN) [17] coupled with margin maximization criterion. 

SDPM [32] casted Mahalanobis distance learning to a convex optimization problem. Distance 

metric learning with eigenvalue optimization (DML-eig) [33] formulated distance learning as 

an eigenvalue optimization problem. Local distance metric learning (LDML) [9] and [27] 

learned distance by combining a set of local distance functions. Linear transformation based 

metric learning (LTML) [18] exploited the flexiblity of linear transformation. Neighborhood 

component analysis (NCA) [8] cooperated with nearest neighbor criterion. Relevance 

feedback [34,24], kernel method [18], dimensionality reduction [25], Bayesian inference [35], 

context [36]  and semantic information [22] are also introduced.  

Stochastic similarity learning methods derive feautre mapping or similarity measure on the 

basis of probabilistic generative models. Probability product kernels [12] used the posterior 

distributions of hidden variables to characterize the samples, and defined the similarity 

measure as the expected inner product of the hidden variables. [13] used the distributions of 

observed variables to characterize the samples and used Kullback-Leibler divergence over the 

distributions to measure the distance between samples. [14] developed a hierarchical 

probabilistic model to learn representation and similarity. Fisher score (FS) [11] derived 

explicit feature mapping through considering how a sample affects the model parameters, and 

defined the Fisher kernel as the weighted inner product of the feature mappings. Free energy 

score space (FESS) [15] and posterior divergence (PD) [16] extended Fisher score through 

introducing more informative measures. It is worth noting that, the feature mappings given by 

these methods are middle level features rather than low level features. These approaches are 
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able to exploit information from probabilistic generative models. Meanwhile, they still can be 

improved by tuning the similarity measure to maximize the retrieval or recognition 

performance. Fisher kernel learning (FKL) [19] learned the kernel parameters by subject to the 

nearest neighbor criterion. Dsicriminative Fisher kernel learning (DFK) [20] learned Fisher 

kernel through considering label information. However, the adopted generative model does 

not fully infer the semantic level information.  

In this work, we present an approach LDA-FEK based on the score space methods whose 

effectivenss has been widely verified [15,16,20]. The advantages of the proposed method are 

twofold: (1) in comparison with deterministic similarity learning methods, our method 

exploits data distribution and semantic information in hidden variables; (2) in comparison with 

other probabilistic learning methods, our method exploits class label in a sophisticated and 

computationally efficient way.  

 

 

Fig. 1. The framework of our proposed approach LDA-FEK. 

3. FESS Kernel from LDA 

In this section, we proceed to derive the free energy kernel (FEK) [15] based on Latent 

Dirichlet Allocation (LDA) [21] and to propose a discriminative learning approach for the 

kernel. We first represent data as bag-of-words and use LDA to model the distribution for 

words, due to its effectiveness in text [21] and image modeling [37]. Then, we derive the FEK 

on the basis of LDA. To boost the discrimination power of the kernel, we propose a 

discriminative learning method for FEK, which essentially tunes the kernel to satisfy the 

recognition or retrieval. See Fig. 1 for the illustration of the proposed method. 

3.1. Latent Dirichlet Allocation (LDA) 

Given that the samples are represented by bag-of-words which might be quantized from other 

features, we use LDA [21] to model the distribution of words. LDA was originally proposed 

for text analysis [21], and was then extended to analyze image by means of bag-of-words 

representation [37].  

LDA is a hierarchical generative model built over a hierarchy of random variables. First, 

we introduce the mathematical notations. Let 1w { , , }Nw w  be the document with N words, 

where 
1 , ,( )V T

n n nw w w L  is an indication vector where 1 ( 0, )j i

n nw w i j     indicates the 
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j-th term of all V ones is chosen as the n-th word of the document. Let 
1 , ,( )K T

n n nz z z L be the 

indicative vector for topic, where 1 ( 0, )k i

n nz z i k     indicates that the k-th topic of all K 

ones is chosen for the n-the word. 

LDA assumes the following generative process for each document w : 

(1) Choose Dir( ) : . This process can be expressed as a conditional distribution, 
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Then the joint distribution over the word, topic and mixture of topic can be expressed as, 

1

(w,z, | , ) ( | ) ( | ) ( | , )
N

n n n

n

P P P z P w z      


                             (1) 

3.2. Probabilistic Free Energy Kernel 

The standard method to estimate the parameters of probabilistic models is the likelihood 

maximization method which operates upon the log likelihood of marginal distribution over the 

observed variable. However, for LDA, it is difficult to obtain the marginal distribution (w)P  

since the integration of (w,z, )P   over ,z   are intractable [21]. To tackle such problem, it 

resorts to the variational EM method [38] which instead maximizes the lower bound of log 

likelihood. To do so, we first construct the approximate posterior distribution of hidden 

variables as follows,  
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The approximate posterior distribution ( ,z | , )Q     takes the same parameterization with the 

prior distribution (z, )P  , but with different parameters. Then the lower bound of the log 

likelihood function can be derived as, 

( ,z,w | , ) ( ,z | , )
log (w | , ) log

( ,z | , )

E [log ( , , | , ) log ( , | , )] ( )
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P Q
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                 (3) 

where the inequality is derived by applying Jensen’s inequality. The variational lower bound 

can be further derived as, 
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The learning procedure of LDA is the iterative maximization with respect to model parameters 

(E-step) and posterior distributions (M-step). The details can be found in [21]. 

Having the variational lower bound ( )L   of the log likelihood function log (w)P , the 

score functions of FESS are the fractions of lower bound,  

(w; ) :      1 1
log log

K K

i ii i
 

 
    ,    i i   , ( )E[log ]i i i   ,  i  
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 ,  ,i j  

The complete FESS score function is the combination of the above fractions, 

 (w; ) (w; ) , (w; ) , (w; )
T

T T T

z w                                          (5) 

These score functions are the expectation of the functions of the random variables and model 

parameters, where the hidden variables allow FESS kernel to exploit the hidden information, 

and model parameters allow it to adapt to data distribution.  

The free energy kernel then can be defined as,  

(w w ; , ) (w ; ) (w ; )T

i j i jK U U                                            (6) 

where U  is the weight matrix and, in the followin section, will be determined by fitting to data 

in the learning procedure.  

3.3. Learning LDA based Free Energy Kernel 

Let yi
 be the label vector for a specific sample w i

. We consider the criterion that a pair of 

samples takes high similarity if they have the same label, and takes low similarity if they have 

the distinct label. The objective function can be expressed as,  

( , ) ( , ) (w ,w ; , )i j i j

i j i

J U s K U 


 y y                                           (7) 

The label similarity function ( , )i js y y  tends to have larger value if they have more common 

labels, and will be specified according to applications. For simplification, we assume that the 

weight maxtrix is diagonal 1=diag( , , )DU u uL , where du  weights the importance of d  to the 

similarity. Note that, (w w ; , ) (w ; ) (w ; )i j i d d j dd
K U u      , where du  weights the 

importance of the d-th component of the feature mapping  . It encourages those components 

with satisfied discrimination ability, and inhibits those components with unsatisfied 
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discrimination ability. Thus, it plays the role of feature selection in the kernel-based similarity 

measure. On the other hand, this weight provides external adaption ability to data distribution 

or intrinsic pattern beside  . In the case of 0du  , the above equation can be formulated as 

(w ; ) (w ; )d i d d j dd
u u    , where du  implements a linear mapping for  . 

Due the computational cost, we consider a stage learning procedure, i.e., first learn model 

parameter   and then learn weight matrix U . The unknown weight matrix can be determined 

through maximizing ( )J U  with respect to U using gradient descent method,  

( , )
( , ) (w ; ) (w ; )T

i j i j

i j id

J U
s

u


   







 y y                                  (8) 

The learning procedure of the proposed approach is the iteration of Eq.(8), which is 

summarized in Algorithm 1. The solution of gradient descend might go to local minima. To 

relieve such a problem, a pre-train strategy is adopted in our implementation. First, U  is 

initialized as an identical matrix, i.e. 1du  , where all components of the feature mapping   

are assumed to be equally important at start. Second, run Algorithm 1 on a subset of training 

set, giving the solution µU . (3) Run Algorithm 1 on the whole training set, where µ(0)U U  is 

used as the initial value. 
 

Algorithm 1 Learning LDA-FEK 

1:  Input: training set 1{(w , )}N

i i iy  ; iteration number T ; learning rate 0   

2:  Initialize parameters (0)U  through pre-train 

3: Train LDA ̂  using variational EM algorithm 

4:  For 1t   to T  do 

5:      ( ) ( 1)
ˆ( ; )t t J U

U U
U


 

 


  

6:  End for  

7:  Output:  
( )TU   

 

The learned LDA-FEK can be embeded to any kernel based classifier. In classification 

procedure, the kernel similarity of w i
and w j can be computed using Algorithm 2. 

 

Algorithm 2  Computing LDA-FEK similarity  

1:  Input: a pair of documents w , wi j  

2:  Compute posterior ( , | w )iQ z  (variational inference [21] or Gibbs sampling [39]) 

3:  Compute posterior ( , | w )jQ z  (variational inference [21] or Gibbs sampling [39]) 

4:  compute the free energy kernel similarity using Eq.(5) and (6) 

5:  Output: (w w )i jK    

 

 

Here we use the text categorization experiment in Section 4.2 with Pascal dataset to 

demonstrate the convergence of our method. We visulize the convergence procedure of 
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Algorithm 1 in Fig. 2. As shown in Fig. 2, Algorithm 1 reaches convergence within about 50 

iterations, which is quite efficient. According to our experiments, this learning procedure is 

about 8-10x faster than the algorithm with the pretraining step removed, without lossing the 

retrieval of categorization performance. For Algorithm 2, it is highly efficient scince all steps 

require no iteration. 

 

 
Fig. 2. The negative log likelihood as a function of the training step 

4. Experiments  

In this section, we apply our Latent Dirichlet Allocation based free energy kernel (LDA-FEK) 

for image retrieval and text categorization. The proposed method will be compared with 

several state-of-the-art methods on Corel5K [40] and MIRFLICKR [41] datasets for image 

retrieval and on 20 News, Sentiment, Reuters and Pascal datasets for text categroization. 

 

4.1 Image Retrieval 

The last decade has seen the increasing popularity of digital images. How to search images 

according to user input from a large gallery has been an important and challenging problem 

[5,1,2]. We are interested in the problem of retrieval by image [5,34,1], where is referred to as 

content based image retrieval (CBIR).  

The framework of applying LDA-FEK for image retrieval is illustrated in Fig. 3. First, we 

quantized image descriptors to visual words, and train LDA-FEK on the training set for a 

chosen number of topics. In the retrieval procedure, for a query image, first represent it as a 

word histogram, and infer its corresponding hidden variables. Its similarity with respect to a 

candidate image is computed using Algorithm 2. For computational effectiveness, we use 

Gibbs sampling [39] to fit the LDA model. 
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Fig. 3. The framework of image retrieval via LDA-FEK. 

4.1.1 Feature Representation and Performance Measure 

Image feature is an important component for retrieval systems. It is expected to capture useful 

information and discard intra-class variance. In this experiment, we follow the suggestions in 

[42] and use four types of color SIFT descriptors as the low level features, i.e., OpponentSIFT, 

rgSIFT, C-SIFT and RGB-SIFT. These descriptors are extracted from the image patches 

sampled from dense grid and Harris-Laplace interest point, with spatial pyramid followed.  

Let 1y ( , , )T

i i Ciy y L  be the label vector for image w i , where 1ciy   if w i  belongs to the 

label c  and 0ciy   otherwise. We choose the label similarity ( , )i js y y  as follows: 

( , ) T

i j i js y y y y                                                      (9) 

Then the direction of gradient descent is,
 

( , )
(w ) (w )T T

i j i j

i j id

J U

u


 







 y y

 
The learning algorithm is obtained by embedding it to Algorithm 1. 

In this experiment, we evaluate the retrieval performance using leave-one-out manner 

[33,3,4]. First, choose a query image from the test set. Second, find the similar images from the 

candidate set according to the LDA-FEK similarity measure. We use mean average precision 

(MAP) which is the summarization of the precision-recall curve, to measure the retrieval 

performance. The precision is defined as the percentage of returned images that contain the 

same label with the query image.  

Let k  be the rank, the precision at cut-off k  can be computed as: 

| {relevant retrieved images of rank or less} |
( )

k
P k

k
  

The average precision (AP) is the averaging of the precision for relevant returned images, that 

is, 
1

AP ( ) rel( ) /
K

k
P k k K


  ,where K  is the number of relevant images, rel( )k  indicates 

whether the image at the rank k  is relevant. Averaging AP across all the query images gives, 

1

1
MAP AP( )

Q

q
q

Q 
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where Q  is the number of query images. Note that, since the datasets generally contain 

mutiple categoires and each category compries distinct number of sample, the MAP can low. 

Further, to evaulate the variance of the retrival results, we also report the standard deviation of 

AP across queries. 

 
4.1.2 Experimental Results on Corel5K dataset 

First we perform the experiment on Corel5K dataset [40]. The Corel5k dataset is a subset 

of Corel Photo Gallery, comprising 50 categories, e.g. beach, tile, wave, tigers, France, bears, 

autumn, and tropical plants, where each category contains 100 images. It has a vocabulary of 

371 words. The sizes of the images are normlized to 192×128 or 128×192, see Fig. 4 for 

examples. In this experiment, we randomly choose 70% samples as the training set and remain 

the rest as the test set, where the training set is used to learn PLSA-FK and the test set is used to 

evaluate the performance. For all compared approaches, we compute the average precision 

(AP) for each category over the top 20 retrieved images. 

 

Fig. 4. Sample images of Corel5K dataset 

 

We compare the proposed approach LDA-FEK with several state-of-the-art approaches: 

SDPM [32], DML-eig. [33], large margin nearest neighbor (LMNN) [17], local distance 

metric learning (LDML) [9], free energy score space (FESS) [15] and Fisher kernel learning 

(FKL) [19]. For FESS, we derive the feature mapping from LDA and defined the kernel 

similarity as the inner product, which is similar with Eq. (6) except that the weight matrix is 

removed. For FKL, we couple it with Gaussian mixture model. FKL is originally designed for 

classification. Here we extend it from retrieval by replacing its label similarity component 

with Eq. (9). For our approach, the number of topics of LDA is set to 100K   through cross 

validation on the training set. For the compared approaches, we implement FESS and DFK 

and follow the authors’ settings, and refer to the results of other from literatures. 

The experimental results are reported in Table 1. It can be found that, DML-eig and 

LMNN show similar performance. Meanwhile, SDPM outperforms DML-eig and LMNN. 

The underlying reason is that SDPM reaches a good solution by means of convex optimization. 

Probabilistic similarity learning approaches, FKL and FESS, show competitive performance 

because they exploit image distribution and topic information. The proposed method 

LDA-FEK, in most cases, achieves the best performance against the compared approaches. 

Specifically, LDA-FEK outperforms FESS by about 1.8%. This improvement is credited to 

the label information which FESS does not utilize. Also, LDA-FEK outperforms FKL about 
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1.1%, because LDA is able to infer the semantic level hidden information much better that 

GMM. Considering the standard deviation of AP cross all queries, these results demonstrate 

the effectiveness of the proposed method in image retrieval.  

Table 1. Retrieval performance over Corel5K dataset 

Algorithm MAP (mean average precision) standard deviation (AP) 

SDPM [32] 0.315 0.008 

DML-eig [33] 0.309 0.012 

LMNN [17] 0.310 0.010 

LDML [9] 0.319 0.013 

FESS [15] 0.320 0.009 

FKL [19] 0.327 0.011 

LDA-FEK (ours) 0.338 0.010 

 

 

Moreover, we note that the query image could be highly various, typically with distinct 

noise. Here we evaluate the robustness of our approach to noise. We simulate the noisy query 

images by adding Gaussian noise to each pixel, where the mean value is set to the original 

value and the bandwidth (sigma) is set to 20, 30 and 40 respectively. The noise test is highly 

challenging. The MAP of our approach LDA-FEK goes down to 0.301, 0.287 and 0.236 

respectively. It can be found that, the decreasing trend of MAP along the noise level is getting 

sharp, which suggests that, the proposed approach works when the bandwidth < 20, and 

suddenly gets worse when bandwidth > 20. This fact also implies that, denoise techniques 

might be helpful to image retrieval. Further, we evaluate the performance of our method when 

the number of training examples varies. 20%, 30%, 40, 60%, 80% examples are sampled from 

the training set and are used to train the model. The results of our method and the best 

compared method FLK (Table 1) are reported in Fig. 5. It can be found that, our method 

achieves an improvement of about 4% over FKL when the number of training examples is 

small, which suggests that, as a benefit of exploiting generative model, our method can be 

applied to those situations with only few training examples. 

 
Fig. 5. MAP as a function of the percentage of training examples 



2538                                                              Lv et al.: Learning Probabilistic Kernel from Latent Dirichlet Allocation 

4.1.3 Experimental Results on MIRFLICKR dataset 

This experiment evaluates the performance of our method on large dataset. In real world 

applications, the dataset is usually very large, with great intra-class variance. These conditions 

require that the similarity measure is scalable, and could capture semantic level information 

against the intra-class variance. The MIRFLICKR dataset [41], collected from Flickr which is 

an online photo-sharing website, is used for experiment. It contains 25,000 samples with 

high-resolution images and corresponding text annotations. The size of the images are 

normalized to MAX (WIDTH, HEIGHT) =500. Some sample images are shown in Fig. 6. For 

comparison, we follow the following experimental scheme. The dataset is split into two parts, 

15,000 images for training and the rest 10,000 images for test. 1,000 images are randomly 

chosen from the test dataset as query images and the rest 24,000 images are remained as the 

gallery. In the gallery, 15,000 images are with text annotations. 
 

 

Fig. 6. Sample images from MIRFlickr dataset 

The proposed method LDA-FEK is compared with several state-of-the-art methods: 

nonnegative matrix factorization (NNMF) [10], large margin nearest neighbor (LMNN) [17], 

linear transformation based metric learning (LTML) [18], free energy score space (FESS) [15] 

and Fisher kernel learning (FKL) [19]. NNMF is a state-of-the-art method on the basis of 

matrix factorization. LMNN is a supervised distance learning method under the large margin 

criterion. FESS and FKL are probabilistic similarity learning methods closely related to our 

method. For all compared methods, we used the authors’ suggested settings. For our method, 

the number of topics in LDA is set to K=160 according to cross validation.  

Table 2. The retrieval performance on MIRFLICKR dataset. 

Algorithm MAP (mean averge precision) standard deviation (AP) 

NNMF [10] 0.583 0.015 

LMNN [17] 0.586 0.020 

LTML [18] 0.597 0.011 

FESS [15] 0.592 0.017 

FKL [19] 0.601 0.014 

LDA-FEK (ours) 0.613 0.013 

 

The experimental results, i.e., MAP and standard deviation of AP, are reported in Table 2. 

It can be found that, FESS and FKL outperform NNMF and LMNN. An important reason is 
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that, compared with NNMF and LMNN, FESS and FKL exploit the data distribution and 

semantic information in a more sophisticated way. Also, LTML shows competitive 

performance with FESS, which benefits from the flexibility of linear transformation. Further, 

LDA-FEK shows superiority over FESS, about 2.1%, with the competitive standard deviation. 

The reason is that, LDA-FEK exploits class label through tuning similarity measure with 

respect to retrieval performance. Also, LDA-FEK outperforms FKL about 1.2%, because it 

benefits from the semantic level information inferred by LDA. Also, as did in Section 4.1.2, 

we evaluate the performance of our method over varying number of training examples. 20%, 

30%, 40, 60%, 80% examples are sampled to form the training set. The results of our method 

and the state-of-the-art method LTML are reported in Fig. 7. Our method again shows 

superiority (up to 6%) than LTML when the number of training examples is small. The 

primary reason is that our method benefits from Bayes inference. 

 
Fig. 7. MAP as a function of the percentage of training examples 

4.2 Text Categorization 

The proposed method LDA-FEK can also be applied to text categorization since LDA is 

orignally designed for text analysis. The framework of applying our LDA-FEK for text 

categorization is illustrated in Fig. 8. Note that, the kernel is learned beforehand and then 

isembedded into the classifier for recognition. 
 

 
Fig. 8. The framework of text categorization via LDA-FEK. 
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In this experiment, the label similarity function in Eq.(7) is chosen as follows, 

( , ) 2I( ) 1i j i js y y y y    

It outputs 1 if iy  equals jy  and -1 otherwise. Then the direction of gradient descent is, 
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The learning algorithm is obtained by substituting the above equation into Algorithm 1. For 

computational effectiveness, we use Gibbs sampling [39] to fit LDA model. 
 

4.2.1 Data sets and Feature Representation 

The 20 Newsgroups corpus contains about 20,000 messages from 20 distinct newsgroups. 

Following the previous works [43], we construct three recognition tasks: (1) Comp: 

comp.sys.ibm.pc.hardware vs. comp.sys.mac.hardware; (2) Sci: sci.electronics vs. sci.med; (3) 

Talk: talk.politics.guns vs. talk.politics.mideast. Each message is represented by bag-of-words. 

For each problem, we selected 1800 examples balanced between two labels. 

The Reuters Corpus contains over 800,000 newswire stories [44]. Each article contains 

one or more labels describing its general topic, industry and region. We created the following 

binary recognition tasks from the labeled documents: (1) Insurance: Life vs. Non-Life; (2) 

Business: Banking vs. Financial; (3) Retail: Specialist Stores vs. Mixed Retail. These tasks 

involve similar categories so they are hard to recognize. For each problem, we selected 2000 

samples using a bag-of-words representation. Each problem contains a balanced mixture of 

samples from each label. 

The sentiment multi-domain data set of [21] consists of product reviews from 7 Amazon 

domains (apparel, book, dvd, electronics, kitchen, music, video). The goal in each domain is to 

classify a product review as either positive or negative. Feature extraction creates unigram and 

bigram features using counts following [21]. For the apparel domain we used all 1940 samples 

and for all other domains we used 2000 samples. Each problem contains a balanced mixture of 

example labels. 

The PASCAL large scale learning challenge workshop provided several large scale binary 

data sets. We selected the NLP task which is a Webspam filtering problem. Each sample is the 

text from a web page. The task is to classify a webpage as either spam or ham. We used the 

default format provided by the workshop and selected 2000 samples. 

 

4.2.2 Experimental Results 

In this experiment, we compare the performance of the LDA-FEK with LDA-NB, LDA-FESS 

[15] and diagonalized CW [43]. LDA-NB trains a LDA for each category and uses the 

maxiumum a posteriori rule for decision. LDA-FESS derives FESS feature based on LDA and 

delivers to SVMs for categorization. Diagonalized CW, confidence weighted learning method, 

is a state-of-the-art method of text categorization. The data sets, feature representation and 

other details are list in the above section. Linear SVM is used as the classifier with our 

LDA-FEK embedded. 
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Table 3. The text categorization performance on 4 data sets. 

Data set Task SVM CW LDA-NB LDA-FESS LDA-FEK 

Sentiment 

Apparel 13.92 12.53 12.93 13.24 11.87 

Books 18.25 16.90 18.10 17.05 17.24 

DVD 19.60 17.45 20.13 18.86 18.21 

Electronics 16.25 14.95 17.02 14.91 15.02 

Kitchen 15.50 13.75 14.90 14.38 13.25 

Music 18.25 17.15 18.42 17.09 17.20 

Video 18.80 21.75 21.98 18.92 18.12 

Reuters 

Retail 12.90 10.55 14.65 12.24 9.95 

Business 15.60 16.35 19.74 15.82 15.70 

Insurance 9.75 8.20 11.30 9.47 9.16 

20 News 

Comp 7.67 6.69 5.65 6.97 5.58 

Sci 3.86 2.44 1.82 3.50 2.04 

Talk 1.24 0.86 0.98 1.33 0.95 

Pascal Webspam 3.85 3.55 15.26 4.19 3.31 

The average catagorization errors on all four data sets are reported in Table 3, where the 

results of SVM and CW are referred in [43]. It can be found that, LDA-FESS outperform SVM 

on 10 tasks and also outperforms LDA-NB on 10 tasks, which consistents with the previous 

works [15]. Futher, LDA based methods show competitive performance with SVM and CW, 

which suggests that the semantic level information, i.e., topic and mixture of topic, inferred by 

LDA is informative for text categorization. Moreover, our LDA-FEK shows superiority over 

LDA-FESS on 11 tasks, which suggests that the discriminative learning which exploits label 

information is effective. We also find that, these algorithms show perference to data sets. 

LDA-FS works particularly well on 20 News while CV works well on Pascal. As a potential 

reason, the basis introduced in algorithms would induce the perference to data sets. Further, as 

did in the above experiments, the performance of our method over varying number of training 

examples is evaluated. 20%, 30%, 40, 60%, 80% examples are sampled from Pascal dataset to 

form the training set. The results of our method and the best compared method CW (Table 3) 

are reported in Fig. 9. Our method achieves an improvement up to 8% against CW, when the 

training set is small, which verifies the advantage of exploiting generative information in 

similarity learning. 

 
Fig. 9. Error rate as a function of the percentage of training examples 
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5. Conclusions 

In this paper, we proposed a similarity learning approach on the basis of LDA which is able to 

discover the topic and mixture of topic hidden in data. The similarity, i.e., free energy kernel, 

is a function over the parameters and variables of LDA. Thus, it inherited the capability of data 

adapation and semantic information inferred from LDA for retrieval and recognition. The 

semantic information given by LDA are the topic and scene in image, or topic and mixture of 

topic in text. Although free energy score space (FESS) is a state-of-the-art feature, it is further 

boosted in our framework by means of intrducing the additional flexiability (matirx U) by 

which the method could adapt to both data distribution and tune for the performance much 

better. Moreover, FESS itself can also tune for the retrieval or categroization performance 

through joint optimization. The proposed method LDA-FEK is applied to both image retrieval 

and text categorization. The results suggest that proposed method is comptitive to other 

state-of-the-art methods in performance and is scalable in data set. However, condering the 

fact that SIFT base features are good at capturing local texture information instead of global 

shape information, the proposed method can be potentially improved by introducing some 

complementary features, e.g.  global features.  

References 

[1]    F. Faria, A. Veloso, H. Almeida, E. Valle, R. Torres, M. Gonc a̧lves and W. Meira Jr, “Learning to 

rank for content-based image retrieval,” in Proc. of ACM Conference on Multimedia Information 

Retrieval, pp. 285–294, 2010. Article (CrossRef Link) 
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