DOI QR코드

DOI QR Code

Comprehensive Analysis of Epstein-Barr Virus LMP2A-Specific CD8+ and CD4+ T Cell Responses Restricted to Each HLA Class I and II Allotype Within an Individual

  • Hyeong-A Jo (Department of Microbiology, College of Medicine, The Catholic University of Korea) ;
  • Seung-Joo Hyun (Department of Microbiology, College of Medicine, The Catholic University of Korea) ;
  • You-Seok Hyun (Department of Microbiology, College of Medicine, The Catholic University of Korea) ;
  • Yong-Hun Lee (Department of Microbiology, College of Medicine, The Catholic University of Korea) ;
  • Sun-Mi Kim (Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea) ;
  • In-Cheol Baek (Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea) ;
  • Hyun-Jung Sohn (Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea) ;
  • Tai-Gyu Kim (Department of Microbiology, College of Medicine, The Catholic University of Korea)
  • Received : 2022.08.05
  • Accepted : 2022.11.02
  • Published : 2023.04.30

Abstract

Latent membrane protein 2A (LMP2A), a latent Ag commonly expressed in Epstein-Barr virus (EBV)-infected host cells, is a target for adoptive T cell therapy in EBV-associated malignancies. To define whether individual human leukocyte antigen (HLA) allotypes are used preferentially in EBV-specific T lymphocyte responses, LMP2A-specific CD8+ and CD4+ T cell responses in 50 healthy donors were analyzed by ELISPOT assay using artificial Ag-presenting cells expressing a single allotype. CD8+ T cell responses were significantly higher than CD4+ T cell responses. CD8+ T cell responses were ranked from highest to lowest in the order HLA-A, HLA-B, and HLA-C loci, and CD4+ T cell responses were ranked in the order HLA-DR, HLA-DP, and HLA-DQ loci. Among the 32 HLA class I and 56 HLA class II allotypes, 6 HLA-A, 7 HLA-B, 5 HLA-C, 10 HLA-DR, 2 HLA-DQ, and 2 HLA-DP allotypes showed T cell responses higher than 50 spot-forming cells (SFCs)/5×105 CD8+ or CD4+ T cells. Twenty-nine donors (58%) showed a high T cell response to at least one allotype of HLA class I or class II, and 4 donors (8%) had a high response to both HLA class I and class II allotypes. Interestingly, we observed an inverse correlation between the proportion of LMP2A-specific T cell responses and the frequency of HLA class I and II allotypes. These data demonstrate the allele dominance of LMP2A-specific T cell responses among HLA allotypes and their intra-individual dominance in response to only a few allotypes in an individual, which may provide useful information for genetic, pathogenic, and immunotherapeutic approaches to EBV-associated diseases.

Keywords

Acknowledgement

We thank the Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea, for typing HLA.

References

  1. Lam JK, Hui KF, Ning RJ, Xu XQ, Chan KH, Chiang AK. Emergence of CD4+ and CD8+ polyfunctional T cell responses against immunodominant lytic and latent EBV antigens in children with primary EBV infection. Front Microbiol 2018;9:416.
  2. Calarota SA, Chiesa A, Zelini P, Comolli G, Minoli L, Baldanti F. Detection of Epstein-Barr virus-specific memory CD4+ T cells using a peptide-based cultured enzyme-linked immunospot assay. Immunology 2013;139:533-544.
  3. Portis T, Longnecker R. Epstein-Barr virus (EBV) LMP2A mediates B-lymphocyte survival through constitutive activation of the Ras/PI3K/Akt pathway. Oncogene 2004;23:8619-8628.
  4. Deacon EM, Pallesen G, Niedobitek G, Crocker J, Brooks L, Rickinson AB, Young LS. Epstein-Barr virus and Hodgkin's disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med 1993;177:339-349.
  5. Sohn DH, Sohn HJ, Lee HJ, Lee SD, Kim S, Hyun SJ, Cho HI, Cho SG, Lee SK, Kim TG. Measurement of CD8+ and CD4+ T cell frequencies specific for EBV LMP1 and LMP2A using mRNA-transfected DCs. PLoS One 2015;10:e0127899.
  6. Alber G, Kim KM, Weiser P, Riesterer C, Carsetti R, Reth M. Molecular mimicry of the antigen receptor signalling motif by transmembrane proteins of the Epstein-Barr virus and the bovine leukaemia virus. Curr Biol 1993;3:333-339.
  7. Mancao C, Hammerschmidt W. Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival. Blood 2007;110:3715-3721.
  8. Callan MF. The evolution of antigen-specific CD8+ T cell responses after natural primary infection of humans with Epstein-Barr virus. Viral Immunol 2003;16:3-16.
  9. Xue Q, Li X, Yang C, Ji B, Li Y, Yan Y, Yang X, Wang C, Chen T. Efficacy of recombinant adenovirus expressing a fusion gene from GM-CSF and Epstein-Barr virus LMP2A in a mouse tumor model. Hum Vaccin Immunother 2017;13:2260-2268.
  10. Portis T, Longnecker R. Epstein-Barr virus LMP2A interferes with global transcription factor regulation when expressed during B-lymphocyte development. J Virol 2003;77:105-114.
  11. Redchenko IV, Rickinson AB. Accessing Epstein-Barr virus-specific T-cell memory with peptide-loaded dendritic cells. J Virol 1999;73:334-342.
  12. Wang B, Yao K, Liu G, Xie F, Zhou F, Chen Y. Computational prediction and identification of Epstein-Barr virus latent membrane protein 2A antigen-specific CD8+ T-cell epitopes. Cell Mol Immunol 2009;6:97-103.
  13. Lautscham G, Haigh T, Mayrhofer S, Taylor G, Croom-Carter D, Leese A, Gadola S, Cerundolo V, Rickinson A, Blake N. Identification of a TAP-independent, immunoproteasome-dependent CD8+ T-cell epitope in Epstein-Barr virus latent membrane protein 2. J Virol 2003;77:2757-2761.
  14. Callan MF, Steven N, Krausa P, Wilson JD, Moss PA, Gillespie GM, Bell JI, Rickinson AB, McMichael AJ. Large clonal expansions of CD8+ T cells in acute infectious mononucleosis. Nat Med 1996;2:906-911.
  15. Steven NM, Annels NE, Kumar A, Leese AM, Kurilla MG, Rickinson AB. Immediate early and early lytic cycle proteins are frequent targets of the Epstein-Barr virus-induced cytotoxic T cell response. J Exp Med 1997;185:1605-1617.
  16. Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 2003;421:852-856.
  17. Shedlock DJ, Shen H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 2003;300:337-339.
  18. Long HM, Haigh TA, Gudgeon NH, Leen AM, Tsang CW, Brooks J, Landais E, Houssaint E, Lee SP, Rickinson AB, et al. CD4+ T-cell responses to Epstein-Barr virus (EBV) latent-cycle antigens and the recognition of EBV-transformed lymphoblastoid cell lines. J Virol 2005;79:4896-4907.
  19. Haigh TA, Lin X, Jia H, Hui EP, Chan AT, Rickinson AB, Taylor GS. EBV latent membrane proteins (LMPs) 1 and 2 as immunotherapeutic targets: LMP-specific CD4+ cytotoxic T cell recognition of EBV-transformed B cell lines. J Immunol 2008;180:1643-1654.
  20. Krensky AM. The HLA system, antigen processing and presentation. Kidney Int Suppl 1997;58:S2-S7.
  21. Gebe JA, Swanson E, Kwok WW. HLA class II peptide-binding and autoimmunity. Tissue Antigens 2002;59:78-87.
  22. Chelvanayagam G. A roadmap for HLA-A, HLA-B, and HLA-C peptide binding specificities. Immunogenetics 1996;45:15-26.
  23. Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991;351:290-296.
  24. Augusto DG, Hollenbach JA. HLA variation and antigen presentation in COVID-19 and SARS-CoV-2 infection. Curr Opin Immunol 2022;76:102178.
  25. Lenz TL, Spirin V, Jordan DM, Sunyaev SR. Excess of deleterious mutations around HLA genes reveals evolutionary cost of balancing selection. Mol Biol Evol 2016;33:2555-2564.
  26. Hyun SJ, Sohn HJ, Lee HJ, Lee SD, Kim S, Sohn DH, Hong CH, Choi H, Cho HI, Kim TG. Comprehensive analysis of cytomegalovirus pp65 antigen-specific CD8+ T cell responses according to human leukocyte antigen class I allotypes and intraindividual dominance. Front Immunol 2017;8:1591.
  27. Hyun YS, Jo HA, Lee YH, Kim SM, Baek IC, Sohn HJ, Cho HI, Kim TG. Comprehensive analysis of CD4+T cell responses to cmv pp65 antigen restricted by single HLA-DR, -DQ, and -DP allotype within an individual. Front Immunol 2021;11:602014.
  28. Baek IC, Choi EJ, Shin DH, Kim HJ, Choi H, Kim TG. Allele and haplotype frequencies of human leukocyte antigen-A, -B, -C, -DRB1, -DRB3/4/5, -DQA1, -DQB1, -DPA1, and -DPB1 by next generation sequencing-based typing in Koreans in South Korea. PLoS One 2021;16:e0253619.
  29. Hyun YS, Lee YH, Jo HA, Baek IC, Kim SM, Sohn HJ, Kim TG. Comprehensive analysis of CD4+ T cell response cross-reactive to SARS-CoV-2 antigens at the single allele level of HLA class II. Front Immunol 2022;12:774491.
  30. Snary D, Barnstable CJ, Bodmer WF, Crumpton MJ. Molecular structure of human histocompatibility antigens: the HLA-C series. Eur J Immunol 1977;7:580-585.
  31. Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, Chetty S, Rathnavalu P, Moore C, Pfafferott KJ, Hilton L, et al. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 2004;432:769-775.
  32. Grifoni A, Moore E, Voic H, Sidney J, Phillips E, Jadi R, Mallal S, De Silva AD, De Silva AM, Peters B, et al. Characterization of magnitude and antigen specificity of HLA-DP, DQ, and DRB3/4/5 restricted DENVspecific CD4+ T cell responses. Front Immunol 2019;10:1568.
  33. Robinson J, Barker DJ, Georgiou X, Cooper MA, Flicek P, Marsh SGE. IPD-IMGT/HLA database. Nucleic Acids Res 2020;48:D948-D955.
  34. Weiskopf D, Grifoni A, Arlehamn CS, Angelo M, Leary S, Sidney J, Frazier A, Mack SJ, Phillips E, Mallal S, et al. Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 339 adults from Managua, Nicaragua. Hum Immunol 2018;79:1-2.
  35. Brooks CF, Moore M. Differential MHC class II expression on human peripheral blood monocytes and dendritic cells. Immunology 1988;63:303-311.
  36. Lee J, Tam H, Adler L, Ilstad-Minnihan A, Macaubas C, Mellins ED. The MHC class II antigen presentation pathway in human monocytes differs by subset and is regulated by cytokines. PLoS One 2017;12:e0183594.
  37. Pender MP, Csurhes PA, Smith C, Douglas NL, Neller MA, Matthews KK, Beagley L, Rehan S, Crooks P, Hopkins TJ, et al. Epstein-Barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight 2018;3:e124714.
  38. Smith C, Beagley L, Khanna R. Acquisition of polyfunctionality by Epstein-Barr virus-specific CD8+ T cells correlates with increased resistance to galectin-1-mediated suppression. J Virol 2009;83:6192-6198.
  39. Jones K, Wockner L, Brennan RM, Keane C, Chattopadhyay PK, Roederer M, Price DA, Cole DK, Hassan B, Beck K, et al. The impact of HLA class I and EBV latency-II antigen-specific CD8+ T cells on the pathogenesis of EBV+ Hodgkin lymphoma. Clin Exp Immunol 2016;183:206-220.
  40. Day EK, Carmichael AJ, ten Berge IJ, Waller EC, Sissons JG, Wills MR. Rapid CD8+ T cell repertoire focusing and selection of high-affinity clones into memory following primary infection with a persistent human virus: human cytomegalovirus. J Immunol 2007;179:3203-3213.
  41. Schober K, Voit F, Grassmann S, Muller TR, Eggert J, Jarosch S, Weissbrich B, Hoffmann P, Borkner L, Nio E, et al. Reverse TCR repertoire evolution toward dominant low-affinity clones during chronic CMV infection. Nat Immunol 2020;21:434-441.
  42. Hislop AD, Annels NE, Gudgeon NH, Leese AM, Rickinson AB. Epitope-specific evolution of human CD8+ T cell responses from primary to persistent phases of Epstein-Barr virus infection. J Exp Med 2002;195:893-905.
  43. Jiang X, Fares MA. Identifying coevolutionary patterns in human leukocyte antigen (HLA) molecules. Evolution 2010;64:1429-1445.
  44. Markov PV, Pybus OG. Evolution and diversity of the human leukocyte antigen (HLA). Evol Med Public Health 2015;2015:1.
  45. Jeffery KJ, Bangham CR. Do infectious diseases drive MHC diversity? Microbes Infect 2000;2:1335-1341.
  46. Prockop S, Doubrovina E, Suser S, Heller G, Barker J, Dahi P, Perales MA, Papadopoulos E, Sauter C, Castro-Malaspina H, et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBVassociated lymphoma following transplantation. J Clin Invest 2020;130:733-747.
  47. O'Reilly RJ, Prockop S, Hasan A, Doubrovina E. Therapeutic advantages provided by banked virus-specific T-cells of defined HLA-restriction. Bone Marrow Transplant 2019;54:759-764.