References
- E. E. Hueske, Firearms and Fingerprints (Essentials of Forensic Science Series 5), Suzanne Bell, ed. (Facts and File, NY, USA, 2008).
- N. E. Archer, Y. Charles, J. A. Elliott, and S. Jickells, "Changes in the lipid composition of latent fingerprint residue with time after deposition on a surface," Forensic Sci. Int. 154, 224-239 (2005). https://doi.org/10.1016/j.forsciint.2004.09.120
- R. S. Croxton, M. G. Baron, D. Butler, T. Kent, and V. G. Sears, "Variation in amino acid and lipid composition of latent fingerprints," Forensic Sci. Int. 199, 93-102 (2010). https://doi.org/10.1016/j.forsciint.2010.03.019
- J. S. Day, H. G. M. Edwards, S. A. Dobrowski, and A. M. Voice, "The detection of drugs of abuse in fingerprints using Raman spectroscopy I: latent fingerprints," Spectrochim. Acta, Part A 60, 563-568 (2004). https://doi.org/10.1016/S1386-1425(03)00263-4
- K. M. Antoine, S. Mortazavi, A. D. Miller, and L. M. Miller, "Chemical differences are observed in children's versus adults' latent fingerprints as a function of time," J. Forensic Sci. 55, 513-518 (2010). https://doi.org/10.1111/j.1556-4029.2009.01262.x
- C. Weyermann, C. Roux, and C. Champod, "Initial results on the composition of fingerprints and its evolution as a function of time by GC/MS analysis," J. Forensic Sci. 56, 102-108 (2011). https://doi.org/10.1111/j.1556-4029.2010.01523.x
- Q. Zhao and A. K. Jain, "Model based separation of overlapping latent fingerprints," IEEE Trans. Inf. Forensics Security 7, 904-918 (2012). https://doi.org/10.1109/TIFS.2012.2187281
- M. Schott, R. Merkel, and J. Dittmann, "Sequence detection of overlapping latent fingerprints using a short-term aging feature," in Proc. IEEE International Workshop on Information Forensics and Security (WIFS) (Tenerife, Spain, Dec. 2012), pp. 85-90.
- J. Feng, Y. Shi, and J. Zhou, "Robust and efficient algorithms for separating latent overlapped fingerprints," IEEE Trans. Inf. Forensics Security 7, 1498-1510 (2012). https://doi.org/10.1109/TIFS.2012.2204254
- A. Nakamura, H. Okuda, T. Nagaoka, N. Akiba, K. Kurosawa, K. Kuroki, F. Ichikawa, A. Torao, and T. Sota, "Portable hyperspectral imager with continuous wave green laser for identification and detection of untreated latent fingerprints on walls," Forensic Sci. Int. 254, 100-105 (2015). https://doi.org/10.1016/j.forsciint.2015.06.031
- R. Bradshaw, W. Rao, R. Wolstenholme, M. R. Clench, S. Bleay, and S. Francese, "Separation of overlapping fingermarks by matrix assisted laser desorption ionisation mass spectrometry imaging," Forensic Sci. Int. 222, 318-326 (2012). https://doi.org/10.1016/j.forsciint.2012.07.009
- H.-W. Tang, W. Lu, C.-M. Che, and K.-M. Ng, "Gold nanoparticles and imaging mass spectrometry: Double imaging of latent fingerprints," Anal. Chem. 82, 1589-1593 (2010). https://doi.org/10.1021/ac9026077
- S. H. Lee, H. Do, and J. J. Yoh, "Simultaneous optical ignition and spectroscopy of a two-phase spray flame," Combust. Flame 165, 334-345 (2016). https://doi.org/10.1016/j.combustflame.2015.12.016
- J.-J. Choi, S.-J. Choi, and J. J. Yoh, "Standoff detection of geological samples of metal, rock, and soil at low pressures using laser-induced breakdown spectroscopy," Appl. Spectrosc. 70, 1411-1419 (2016). https://doi.org/10.1177/0003702816664858
- K.-J. Lee, S.-J. Choi, and J. J. Yoh, "Stand-off laser-induced breakdown spectroscopy of aluminum and geochemical reference materials at pressure below 1 torr," Spectrochim. Acta, Part B 101, 335-341 (2014). https://doi.org/10.1016/j.sab.2014.06.009
- J.-H. Yang, S.-J. Choi, and J. J. Yoh, "Towards reconstruction of overlapping fingerprints using plasma spectroscopy," Spectrochim. Acta, Part B 134, 25-32 (2017). https://doi.org/10.1016/j.sab.2017.06.001
- M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Detection and mapping of latent fingerprints by laser-induced breakdown spectroscopy," Appl. Spectrosc. 60, 1322-1327 (2006). https://doi.org/10.1366/000370206778999085
- Y. Godwal, M. T. Taschuk, S. L. Lui, Y. Y. Tsui, and R. Fedosejevs, "Development of laser-induced breakdown spectroscopy for microanalysis applications," Laser Part. Beams 26, 95-104 (2008). https://doi.org/10.1017/S0263034608000128
- M. Abdelhamid, F. J. Fortes, M. A. Harith, and J. J. Laserna, "Analysis of explosive residues in human fingerprints using optical catapulting-laser-induced breakdown spectroscopy," J. Anal. At. Spectrom. 26, 1445-1450 (2011). https://doi.org/10.1039/c0ja00188k
- M. Abdelhamid, F. J. Fortes, J. J. Laserna, and M. A. Harith, "Optical catapulting laser induced breakdown spectroscopy (OC-LIBS) and conventional LIBS: a comparative study," AIP Conf. Proc. 1380, 55-59 (2011).
- J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, "A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy," Anal. Bioanal. Chem. 400, 3261-3271 (2011). https://doi.org/10.1007/s00216-011-4865-y
- A. D. S. Augusto, E. F. Batista, and E. R. P. Filho, "Direct chemical inspection of eye shadow and lipstick solid samples using laser-induced breakdown spectroscopy (LIBS) and chemometrics: proposition of classification models," Anal. Methods 8, 5851-5860 (2016). https://doi.org/10.1039/C6AY01138A
- M. J. C. Pontes, J. Cortez, R. K. H. Galvao, C. Pasquini, M. C. U. Araujo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, "Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain," Anal. Chim. Acta 642, 12-18 (2009). https://doi.org/10.1016/j.aca.2009.03.001
- T. Zhang, L. Liang, K. Wang, H. Tang, X. Yang, Y. Duan, and H. Li, "A novel approach for the quantitative analysis of multiple elements in steel based on laser-induced breakdown spectroscopy (LIBS) and random forest regression (RFR)," J. Anal. At. Spectrom. 29, 2323-2329 (2014). https://doi.org/10.1039/C4JA00217B
- S. Awasthi, R. Kumar, G. K. Rai, and A. K. Rai, "Study of archaeological coins of different dynasties using libs coupled with multivariate analysis," Opt. Lasers Eng. 79, 29-38 (2016). https://doi.org/10.1016/j.optlaseng.2015.11.005
- S. Moncayo, M. Kocianova, J. Hulik, J. Plavcan, M. Hornackova, M. Suchonova, P. Veis, and J. O. Caceres, "Discrimination of copper alloys with archaeological interest using LIBS and chemometric methods," in Proc. The 23rd Annual Conference of Doctoral Students - WDS 2014 (Prague, Ceska republika, Jun. 2014), pp. 131-135.
- B. G. Oztoprak, M. A. Sinmaz, and F. Tulek, "Composition analysis of medieval ceramics by laser-induced breakdown spectroscopy (LIBS)," Appl. Phys. A 122, 557 (2016). https://doi.org/10.1007/s00339-016-0085-9
- S. Wold, K. Esbensen, and P. Geladi, "Principal component analysis," Chemom. Intell. Lab. Syst. 2, 37-52 (1987). https://doi.org/10.1016/0169-7439(87)80084-9
- G. R. Flaten, B. Grung, and O. M. Kvalheim, "A method for validation of reference sets in SIMCA modelling," Chemom. Intell. Lab. Syst. 72, 101-109 (2004). https://doi.org/10.1016/j.chemolab.2004.03.003
- R. G. Brereton and G. R. Lloyd, "Partial least squares discriminant analysis: taking the magic away," J. Chemom. 28, 213-225 (2014). https://doi.org/10.1002/cem.2609
- N. C. Dingari, I. Barman, A. K. Myakalwar, S. P. Tewari, and M. K. Gundawar, "Incorporation of support vector machines in the LIBS toolbox for sensitive and robust classification amidst unexpected sample and system variability," Anal. Chem. 84, 2686-2694 (2012). https://doi.org/10.1021/ac202755e
- P. L. Smith, C. Heise, J. R. Esmond, and R. L. Kuruczs, Atomic spectral line database (Harvard-Smithsonian Center for Astrophysics, 2016), http://cfa-www.harvard.edu/amp/data/kur23/sekur.html (Accessed: March 2020).