DOI QR코드

DOI QR Code

Forensic Classification of Latent Fingerprints Applying Laser-induced Plasma Spectroscopy Combined with Chemometric Methods

케모메트릭 방법과 결합된 레이저 유도 플라즈마 분광법을 적용한 유류 지문의 법의학적 분류 연구

  • Yang, Jun-Ho (eXtreme Energy Laboratory, Department of Aerospace Engineering, Seoul National University) ;
  • Yoh, Jai-Ick (eXtreme Energy Laboratory, Department of Aerospace Engineering, Seoul National University)
  • 양준호 (서울대학교 기계항공공학부, 고에너지 응용 연구실) ;
  • 여재익 (서울대학교 기계항공공학부, 고에너지 응용 연구실)
  • Received : 2020.02.21
  • Accepted : 2020.03.25
  • Published : 2020.06.25

Abstract

An innovative method for separating overlapping latent fingerprints, using laser-induced plasma spectroscopy (LIPS) combined with multivariate analysis, is reported in the current study. LIPS provides the capabilities of real-time analysis and high-speed scanning, as well as data regarding the chemical components of overlapping fingerprints. These spectra provide valuable chemical information for the forensic classification and reconstruction of overlapping latent fingerprints, by applying appropriate multivariate analysis. This study utilizes principal-component analysis (PCA) and partial-least-squares (PLS) techniques for the basis classification of four types of fingerprints from the LIPS spectra. The proposed method is successfully demonstrated through a classification example of four distinct latent fingerprints, using discrimination such as soft independent modeling of class analogy (SIMCA) and partial-least-squares discriminant analysis (PLS-DA). This demonstration develops an accuracy of more than 85% and is proven to be sufficiently robust. In addition, by laser-scanning analysis at a spatial interval of 125 ㎛, the overlapping fingerprints were separated as two-dimensional forms.

본 논문에서는 다변량 분석법과 결합된 레이저 유도 플라즈마 분광법을 사용하여 겹친 유류 지문을 분리하는 혁신적인 방법을 연구하였다. LIPS는 겹친 유류 지문의 화학 성분에 대한 데이터뿐 아니라 실시간 분석 및 고속 스캐닝이 가능한 분광법이다. 레이저 유도 플라즈마 분광법을 통해 도출된 스펙트럼은 적절한 다변량 분석이 적용되어 법의학적 분류와 겹친 유류 지문의 재구성에 유용한 화학적 성분을 제공한다. 본 연구에서는 LIPS 스펙트럼에서 4가지의 유류 지문을 분류하기 위하여, 주성분 분석 방식과 부분 최소 제곱 회귀 분석을 사용하였다. 제안된 방법은 SIMCA 및 PLS-DA와 같은 구별 방식을 사용하여 4개의 유류 지문의 분류를 성공적으로 입증하였다. 본 연구의 결과는 대략 85% 이상의 정확도를 가졌으며, external validation 실험에서도 분류의 가능함을 보였다. 최종적으로, 125 ㎛의 공간 간격으로 레이저 스캐닝 분석을 통한 겹친 유류 지문의 2차원 형태의 분리가 가능함을 입증하였다.

Keywords

References

  1. E. E. Hueske, Firearms and Fingerprints (Essentials of Forensic Science Series 5), Suzanne Bell, ed. (Facts and File, NY, USA, 2008).
  2. N. E. Archer, Y. Charles, J. A. Elliott, and S. Jickells, "Changes in the lipid composition of latent fingerprint residue with time after deposition on a surface," Forensic Sci. Int. 154, 224-239 (2005). https://doi.org/10.1016/j.forsciint.2004.09.120
  3. R. S. Croxton, M. G. Baron, D. Butler, T. Kent, and V. G. Sears, "Variation in amino acid and lipid composition of latent fingerprints," Forensic Sci. Int. 199, 93-102 (2010). https://doi.org/10.1016/j.forsciint.2010.03.019
  4. J. S. Day, H. G. M. Edwards, S. A. Dobrowski, and A. M. Voice, "The detection of drugs of abuse in fingerprints using Raman spectroscopy I: latent fingerprints," Spectrochim. Acta, Part A 60, 563-568 (2004). https://doi.org/10.1016/S1386-1425(03)00263-4
  5. K. M. Antoine, S. Mortazavi, A. D. Miller, and L. M. Miller, "Chemical differences are observed in children's versus adults' latent fingerprints as a function of time," J. Forensic Sci. 55, 513-518 (2010). https://doi.org/10.1111/j.1556-4029.2009.01262.x
  6. C. Weyermann, C. Roux, and C. Champod, "Initial results on the composition of fingerprints and its evolution as a function of time by GC/MS analysis," J. Forensic Sci. 56, 102-108 (2011). https://doi.org/10.1111/j.1556-4029.2010.01523.x
  7. Q. Zhao and A. K. Jain, "Model based separation of overlapping latent fingerprints," IEEE Trans. Inf. Forensics Security 7, 904-918 (2012). https://doi.org/10.1109/TIFS.2012.2187281
  8. M. Schott, R. Merkel, and J. Dittmann, "Sequence detection of overlapping latent fingerprints using a short-term aging feature," in Proc. IEEE International Workshop on Information Forensics and Security (WIFS) (Tenerife, Spain, Dec. 2012), pp. 85-90.
  9. J. Feng, Y. Shi, and J. Zhou, "Robust and efficient algorithms for separating latent overlapped fingerprints," IEEE Trans. Inf. Forensics Security 7, 1498-1510 (2012). https://doi.org/10.1109/TIFS.2012.2204254
  10. A. Nakamura, H. Okuda, T. Nagaoka, N. Akiba, K. Kurosawa, K. Kuroki, F. Ichikawa, A. Torao, and T. Sota, "Portable hyperspectral imager with continuous wave green laser for identification and detection of untreated latent fingerprints on walls," Forensic Sci. Int. 254, 100-105 (2015). https://doi.org/10.1016/j.forsciint.2015.06.031
  11. R. Bradshaw, W. Rao, R. Wolstenholme, M. R. Clench, S. Bleay, and S. Francese, "Separation of overlapping fingermarks by matrix assisted laser desorption ionisation mass spectrometry imaging," Forensic Sci. Int. 222, 318-326 (2012). https://doi.org/10.1016/j.forsciint.2012.07.009
  12. H.-W. Tang, W. Lu, C.-M. Che, and K.-M. Ng, "Gold nanoparticles and imaging mass spectrometry: Double imaging of latent fingerprints," Anal. Chem. 82, 1589-1593 (2010). https://doi.org/10.1021/ac9026077
  13. S. H. Lee, H. Do, and J. J. Yoh, "Simultaneous optical ignition and spectroscopy of a two-phase spray flame," Combust. Flame 165, 334-345 (2016). https://doi.org/10.1016/j.combustflame.2015.12.016
  14. J.-J. Choi, S.-J. Choi, and J. J. Yoh, "Standoff detection of geological samples of metal, rock, and soil at low pressures using laser-induced breakdown spectroscopy," Appl. Spectrosc. 70, 1411-1419 (2016). https://doi.org/10.1177/0003702816664858
  15. K.-J. Lee, S.-J. Choi, and J. J. Yoh, "Stand-off laser-induced breakdown spectroscopy of aluminum and geochemical reference materials at pressure below 1 torr," Spectrochim. Acta, Part B 101, 335-341 (2014). https://doi.org/10.1016/j.sab.2014.06.009
  16. J.-H. Yang, S.-J. Choi, and J. J. Yoh, "Towards reconstruction of overlapping fingerprints using plasma spectroscopy," Spectrochim. Acta, Part B 134, 25-32 (2017). https://doi.org/10.1016/j.sab.2017.06.001
  17. M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Detection and mapping of latent fingerprints by laser-induced breakdown spectroscopy," Appl. Spectrosc. 60, 1322-1327 (2006). https://doi.org/10.1366/000370206778999085
  18. Y. Godwal, M. T. Taschuk, S. L. Lui, Y. Y. Tsui, and R. Fedosejevs, "Development of laser-induced breakdown spectroscopy for microanalysis applications," Laser Part. Beams 26, 95-104 (2008). https://doi.org/10.1017/S0263034608000128
  19. M. Abdelhamid, F. J. Fortes, M. A. Harith, and J. J. Laserna, "Analysis of explosive residues in human fingerprints using optical catapulting-laser-induced breakdown spectroscopy," J. Anal. At. Spectrom. 26, 1445-1450 (2011). https://doi.org/10.1039/c0ja00188k
  20. M. Abdelhamid, F. J. Fortes, J. J. Laserna, and M. A. Harith, "Optical catapulting laser induced breakdown spectroscopy (OC-LIBS) and conventional LIBS: a comparative study," AIP Conf. Proc. 1380, 55-59 (2011).
  21. J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, "A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy," Anal. Bioanal. Chem. 400, 3261-3271 (2011). https://doi.org/10.1007/s00216-011-4865-y
  22. A. D. S. Augusto, E. F. Batista, and E. R. P. Filho, "Direct chemical inspection of eye shadow and lipstick solid samples using laser-induced breakdown spectroscopy (LIBS) and chemometrics: proposition of classification models," Anal. Methods 8, 5851-5860 (2016). https://doi.org/10.1039/C6AY01138A
  23. M. J. C. Pontes, J. Cortez, R. K. H. Galvao, C. Pasquini, M. C. U. Araujo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, "Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain," Anal. Chim. Acta 642, 12-18 (2009). https://doi.org/10.1016/j.aca.2009.03.001
  24. T. Zhang, L. Liang, K. Wang, H. Tang, X. Yang, Y. Duan, and H. Li, "A novel approach for the quantitative analysis of multiple elements in steel based on laser-induced breakdown spectroscopy (LIBS) and random forest regression (RFR)," J. Anal. At. Spectrom. 29, 2323-2329 (2014). https://doi.org/10.1039/C4JA00217B
  25. S. Awasthi, R. Kumar, G. K. Rai, and A. K. Rai, "Study of archaeological coins of different dynasties using libs coupled with multivariate analysis," Opt. Lasers Eng. 79, 29-38 (2016). https://doi.org/10.1016/j.optlaseng.2015.11.005
  26. S. Moncayo, M. Kocianova, J. Hulik, J. Plavcan, M. Hornackova, M. Suchonova, P. Veis, and J. O. Caceres, "Discrimination of copper alloys with archaeological interest using LIBS and chemometric methods," in Proc. The 23rd Annual Conference of Doctoral Students - WDS 2014 (Prague, Ceska republika, Jun. 2014), pp. 131-135.
  27. B. G. Oztoprak, M. A. Sinmaz, and F. Tulek, "Composition analysis of medieval ceramics by laser-induced breakdown spectroscopy (LIBS)," Appl. Phys. A 122, 557 (2016). https://doi.org/10.1007/s00339-016-0085-9
  28. S. Wold, K. Esbensen, and P. Geladi, "Principal component analysis," Chemom. Intell. Lab. Syst. 2, 37-52 (1987). https://doi.org/10.1016/0169-7439(87)80084-9
  29. G. R. Flaten, B. Grung, and O. M. Kvalheim, "A method for validation of reference sets in SIMCA modelling," Chemom. Intell. Lab. Syst. 72, 101-109 (2004). https://doi.org/10.1016/j.chemolab.2004.03.003
  30. R. G. Brereton and G. R. Lloyd, "Partial least squares discriminant analysis: taking the magic away," J. Chemom. 28, 213-225 (2014). https://doi.org/10.1002/cem.2609
  31. N. C. Dingari, I. Barman, A. K. Myakalwar, S. P. Tewari, and M. K. Gundawar, "Incorporation of support vector machines in the LIBS toolbox for sensitive and robust classification amidst unexpected sample and system variability," Anal. Chem. 84, 2686-2694 (2012). https://doi.org/10.1021/ac202755e
  32. P. L. Smith, C. Heise, J. R. Esmond, and R. L. Kuruczs, Atomic spectral line database (Harvard-Smithsonian Center for Astrophysics, 2016), http://cfa-www.harvard.edu/amp/data/kur23/sekur.html (Accessed: March 2020).