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Abstract: In this study, we propose a new inference algorithm for a multiclass Gaussian process 
classification model using a variational EM framework and the Laplace approximation (LA) 
technique. This is performed in two steps, called expectation and maximization. First, in the 
expectation step (E-step), using Bayes’ theorem and the LA technique, we derive the approximate 
posterior distribution of the latent function, indicating the possibility that each observation belongs 
to a certain class in the Gaussian process classification model. In the maximization step, we 
compute the maximum likelihood estimators for hyper-parameters of a covariance matrix necessary 
to define the prior distribution of the latent function by using the posterior distribution derived in 
the E-step. These steps iteratively repeat until a convergence condition is satisfied. Moreover, we 
conducted the experiments by using synthetic data and Iris data in order to verify the performance 
of the proposed algorithm. Experimental results reveal that the proposed algorithm shows good 
performance on these datasets.  
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1. Introduction 

Gaussian process (GP) can be conveniently used to 
specify prior distributions of hidden functions for Bayesian 
inference. In the case of regression with Gaussian noise, 
inference can be done simply in closed form, since the 
posterior is also a GP. But in the case of classification, 
exact inference is analytically intractable because the 
likelihood function is given as a non-Gaussian form. 

One prolific line of attack is based on approximating 
the non-Gaussian posterior with a tractable Gaussian 
distribution. Three different types of solutions have been 
suggested in the recent literature [1]. These are the Laplace 
approximation (LA) and expectation propagation (EP), 
Kullback-Leibler divergence minimization comprising 

variational bounding as a special case, and factorial 
approximation. First, Williams et al. proposed the use of a 
second-order Taylor expansion around the posterior mode 
to a natural way of constructing a Gaussian approximation 
to the log-posterior distribution [2]. The mode is taken as 
the mean of the approximate Gaussian. Linear terms of the 
log-posterior vanish because the gradient at the mode is 
zero. The quadratic term of the log-posterior is given by 
the negative Hessian matrix. Minka presented a new 
approximation technique (EP) for Bayesian networks [3]. 
This is an iterative method to find approximations based 
on approximate marginal moments, which can be applied 
to Gaussian processes. Second, Opper et al. discussed the 
relationship between the Laplace and variational 
approximations, and they show that for models with 
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Gaussian priors and factoring likelihoods, the number of 
variational parameters is actually O(N) [4]. They also 
considered a problem that minimizes the KL-divergence 
measure between the approximated posterior and the exact 
posterior. Gibbs et al. showed that the variational methods 
of Jaakkola and Jordan are applied to Gaussian processes 
to produce an efficient Bayesian binary classifier [5]. They 
obtained tractable upper and lower bounds for the un-
normalized posterior density. These bounds are 
parameterized by variational parameters that are adjusted 
to obtain the tightest possible fit. Using the normalized 
versions of the optimized bounds, they then compute 
approximations to the predictive distributions. Third, Csato 
et al. presented three simple approximations for the 
calculation of the posterior mean in Gaussian process 
classification [6]. The first two methods are related to 
mean field ideas known in statistical physics. The third 
approach is based on a Bayesian outline approach. Finally, 
Kim et al. presented an approximate expectation–
maximization (EM) algorithm and the EM-EP algorithm to 
learn both the latent function and hyper-parameters in a 
Gaussian process classification model [7]. 

We propose a new inference algorithm that can 
simultaneously derive both a posterior distribution of a 
latent function and maximum likelihood estimators of 
hyper-parameters in a Gaussian process classification 
model. The proposed algorithm is performed in two steps: 
called the expectation step (E-step) and the maximization 
step (M-step). First, in the expectation step, using the 
Bayesian formula and LA, we derive the approximate 
posterior distribution of the latent function based on 
learning data. Furthermore, we calculate a mean vector and 
covariance matrix of the latent function. Second, in the 
maximization step, using a derived posterior distribution of 
the latent function, we derive the maximum likelihood 
estimator for hyper-parameters necessary to define a 
covariance matrix. Moreover, we conducted the 
experiments by using synthetic data and Iris data in order 
to verify the performance of the proposed algorithm. 

The rest of this paper is organized as follows. The next 
section describes a multiclass Gaussian process 
classification model. In the Section 3 and 4, inference 
scheme section, we propose a new inference method that 
can derive the approximate distribution for a posterior 
distribution of latent variables and estimate the hyper-
parameters of the covariance function for prior distribution 
of the latent function. The section 5 includes performance 
evaluations and discussion of the effects of the proposed 
model. Finally, we conclude this paper in the last section. 

2. Multiclass Gaussian Process 
Classification Model 

We first consider a multiclass Gaussian process 
classification model (MGPCM). The model consists of 
three components: a latent function with a Gaussian 
process prior distribution, a multiclass response, and a link 
function that relates between the latent function and 
response mean. First, we consider the multivariate latent 

function. Here, we define the latent function ( )f x for 
Gaussian process classification having C classes at a set of 
observations 1, , nx x  as 
 

 
1 1
1 1 1

1

( | ) (f ( ), , f ( ), , f ( ), , f ( ),

, f ( ), ,f ( ))

c c
n

C C T
n

Θ =f x x x x x

x x
  (1) 

 
Then, we assume a GP prior for the latent function 

( )f x as defined by 
 

 ( | ) ~ GP( , ( , | ))i jΘ Θf x 0 K x x   (2) 
 

where ( , )i jK x x is the covariance matrix. In this paper, we 
assume that the latent function ( )f x represents the 
C classes, and the individual variables of the c -th 
component vector ( )cf x  of latent function ( )f x are 
uncorrelated. Therefore, the GP covariance matrix 

( , )i jK x x can be assumed from the following block 
diagonal form: 

 

 
1 1( , | ) diag(K ( , | ), ,K ( , | ),

,K ( , | ))

c c
i j i j i j

C C
i j

Θ = Θ Θ

Θ

K x x x x x x

x x
  (3) 

 
where 
 
 c

1 2 ( )K ( , | ) ( ( , ) | ( , )) , , 1, ,c c c c
i j i j n nk i j nθ θ ×Θ = =x x x x   

 
is also the covariance matrix for the c -th component 
vector of the latent function.  

Second, the response vector Y  is constituted by 
identical independent multinomial random variables where 
each component variable represents a c class. That is, let 
us define the response vector Y as 

 

 
1 1
1 1

1

( ( ), , ( ), , ( ), , ( ),

, ( ), , ( )) ,

c c
n n

C C T
n

y y y y

y y

=Y x x x x
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where a vector of response Y  has the same length as ( )f x , 
and each component c

ky of the c -th response vector 

1( , , )c c c T
ny y=y for 1, ,c C=  has 1  for the class, which 

is the label for observation, and 0 for the other 
1C − classes. Here, we are able to assume that the 

multinomial density function ( | )p Y π of the response 
vector Y is given in the following form: 

 

 
1 1

( | ) (π )
c
k

C n
yc

k
c k

p
= =

=∏∏Y π   (5) 

 
where the indicator variable c

ky  takes one or zero with 
probability πc

k and 1-πc
k , and πc

k denotes the probability 
that the k -th observation vector belongs to the particular 
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class c .  
Third, we consider the link function that specifies the 

relation between the latent function ( )f x and the response 
mean vector E( | )Y f . Here, the link function can be 
defined as 

 
 1E( | ) (E( | ), ,E( | ), ,E( | )) ,c C T=Y f y f y f y f   

 
where 

 

 1E( | ) ( (y | ), , (y | ), , (y | )),c c c
k n

c E E E=y f f f f   
 1, ,c C= ,  
 
And 
 

 '

' 1

exp(f )(y | ) π , 1, ,
exp(f )

c
c c k
k k C c

kc

E k n
=

= = =
∑

f  (6) 

3. Variational EM Framework and Laplace 
Approximation Method  

One important issue in the Gaussian process 
classification model is to both derive the approximate 
distribution for a posterior distribution of latent variables 
and to estimate the hyper-parameters of the covariance 
function for prior distribution of the latent function. One 
possible approach is to consider the variational EM 
algorithm that is widely used in the incomplete data.  

In the E-step of the variational EM algorithm, we 
derive the approximate Gaussian posterior ( | , , )q Θf X Y  
for latent function value f using Laplace approximation. In 
the M-step of the variational EM algorithm, we seek an 
estimator of hyper-parameter Θ  that can maximize a 
lower bound on a logarithm of the marginal likelihood 

( | , )q ΘY X  using the approximate posterior ( | , , )q Θf X Y  
obtained in the E-step. The E-step and M-step are 
iteratively repeated until a convergence condition is 
satisfied. Our algorithm is given in detail in the following 
sections. 

3.1 Variation E-step and Laplace 
Approximation 

First, using Bayes' rule at a variational E-step, the 
posterior over the latent variable f  is given by  

 
 ( | , , ) ( | ) ( | , )p p pΘ = Θf X y y f f X / ( | , )p Θy X   (7) 

 
but because the denominator ( | , )p Θy X is independent 
with latent function f , we need only consider the un-
normalized posterior when maximizing with respect to f . 
Taking the logarithm of the un-normalized posterior of 
latent function f , it can be given as  
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Here, taking the first and second derivatives of Eq. (8) 

with respect to f , we obtain 
 

 
1
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p
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where ln ( | )p≡ −∇∇W Y F is diagonal, since the 
likelihood factorizes over the case. 

A natural way of constructing a Gaussian approximation 
to the log-posterior ( ) ln ( | , , )pΨ = Θf f Y X  is to perform a 
second-order Taylor expansion at the mode Fm  of the 
posterior, i.e. 
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It gives us the following equation: 
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Thus, we have obtained a Gaussian approximation 

posterior ( | , , )q Θf Y X to the true posterior ( | , , )p Θf Y X  
with mean vector fm and covariance matrix 

1 1( ) .− −= +V K W  That is, using the Laplace 
approximation, the true posterior ( | , , )p Θf X Y of latent 
function f is approximated as a Gaussian posterior 

( | , , )q Θf X Y  as the following: 
 

 ( | , , )q Θf X Y  ~ 1 1( , ( ) )N − −= +Fm V K W   .(12) 
 
Here, the mode or maximum fm of the log-posterior 

( )Ψ f  can be found iteratively using the Newton-Rapson 
algorithm. That is, given an initial estimate, fm , a new 
estimate is iteratively found, as follows:  
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Moreover, since the log-likelihood function ln ( | )p Y f  
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can be expressed as 1 C

1
ln ( , , | )

n

k k k
k

p y y
=
∑ f , we obtain the 

following equation by differentiating the log-likelihood 
function ln ( | )p Y f with respect to f : 
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where a vector π  is defined by  
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Second, the matrix W can be given as 
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T
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where Π  is an ( )n nC× matrix obtained by horizontally 

stacking the diagonal matrices ( )diag(π ) , 1, ,c c C= . This 
is given in the following form: 
 

 

1
1 1

1
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3.2 Variational M-Step 
As we assume a derived approximate Gaussian 

posterior ( | , , )q Θf X Y is held fixed, we seek the new 
parameter values newΘ that the lower bound ( , )F q Θ , 
given in the following Eq. (18) can be maximized with 
respect to Θ : 
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Here, the low bound ( , )F q Θ can be written as  
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   (19) 
 
Moreover, since the second term and the third term are 

independent with hyper-parameters Θ , we only need to 
maximize the first term, ( ) (ln ( | , ))qE p Θf f X , with respect 
to Θ . By computing ( ) (ln ( | , ))qE p Θf f X using a Gaussian 
posterior, we obtain: 
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Here, by differentiating ( ) (ln ( | , ))qE p Θf f X  with respect 

to Θ  using the E-step result, we obtain 
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Therefore, we can obtain the hyper-parameter 
maximizing the free energy by the following gradient 
update rule:  

 

 ( ) (ln ( | , ))

old

qnew old E p
η

Θ=Θ

∂ Θ⎛ ⎞
Θ =Θ + ⎜ ⎟∂Θ⎝ ⎠

f f X
  (22) 

4. Prediction Method 

Here, if we denote a vector *f as the latent function 
value corresponding with test point *x , then the joint prior 
distribution of the training latent function f and the test 
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latent function *f is  
 

 *
* *

* * **
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where  
 

1
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nk k= =x x x x x x   

and  
 1

** * * * *( ( , ), , ( , ))Cdiag k k=k x x x x   
 
Hence, given a novel test point *x , the posterior 

distribution of latent function *f  corresponding to a test 
point *x  can be obtained by marginalizing the latent 
functions of the training set: 
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But the posterior distribution of the latent function is 

unfortunately not Gaussian due to the non-Gaussian 
likelihood, as mentioned above. Hence, the approximate 
posterior distribution of the latent function is necessary. 
Here, if we use the Laplace approximation posterior 

( | , , )q Θf X Y to a true posterior ( | , , )p Θf X Y , we have 
obtained the approximate posterior distribution 

* *( | , , , )q Θf x X Y  of latent function *f . It is obviously 
given as the Gaussian with mean vector 1

* ( )T − + FK K W m  
and covariance matrix 1

** * *.
T −−k K K K   

Hence, the predictive mean vector for class c  of the 
latent function value *f corresponding with test point *x is 
given by  
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q

c T c c

−Ε Θ =

= −
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where the last equality comes from 1− = −FK m Y π , and 

1( ) ( )c c c c− = −FK m y π . Moreover, if these are put into 
vector form, then the expectation of latent function 

*f under the Laplace approximation is given as 
 

 * * * *( | , , , ) Q ( ),c T
q= Ε Θ = −μ f x X Y y π   (26) 

 
where a matrix *QT  is defined as the ( )nC C× matrix  
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And the covariance matrix of the latent function *f  can 
be represented as 

 

 * * *

1 1
** * *

( | , , , )

( )
q

T

Cov
− −

= Θ

= − +

Σ f x X Y

k Q K W Q
  (28) 

 
Therefore, we have obtained the approximate Gaussian 

posterior distribution * *( , )G μ Σ of the latent function *f . 
Finally, in order to classify input vector *X into its 

proper class, we first extract the n  random samples 
*1 *n, ,f f from the predictive distribution of latent function 

*f corresponding to the input vector. Further, using the Eq. 
(2), we calculate the estimate of the classification 
probability *1 *n(π , ,π ), 1, ,c c c C= ,and compute a mean 
vector of these probabilities 1 C

* *(π , ,π ).  Therefore, we 
will classify the input vector *X  into the class which its 
classification probability is maximized. That is, 

 
 

' 1 C
* 1 * *π arg max (π , ,π ).c

c C≤ ≤=   (29) 

5. Performance Evaluation 

In order to evaluate the performance improvement 
achieved by the proposed inference method, we consider a 
bivariate normal synthetic data and Iris data.  

5.1 Synthetic Data 
Here, we will consider four partially overlapping 

Gaussian sources of data in two dimensions. First, in order 
to train a model, we generate four classes of bivariate 
Gaussian random samples. One hundred sixty data points 
were generated by the four bivariate normal distributions 
with the mean vectors and covariance matrices described 
in Table 1. Fig. 1(a) plots these data points in a two-
dimensional space.  

Table 1. Mean Vector and Covariance Matrix for Each 
Class. 

 Class 1 Class 2 Class 3 Class 4 
Mean  
vector (1.75,-1.0) (-1.75,1.0) (2,2) (-2,-2) 

Covariance
matrix 

1 0
0 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

1 0.5
0.5 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

 
1 0.5
0.5 1

−⎛ ⎞
⎜ ⎟
−⎝ ⎠

1 0.5
0.5 1

−⎛ ⎞
⎜ ⎟
−⎝ ⎠

 

   

Fig. 1. (a) Training data, (b) testing data, and (c) class 
region and misclassification observations.  
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Second, in order to verify the performance of the model, 
we generate four different classes of bivariate Gaussian 
random samples. Four hundred data points were generated 
by the bivariate normal distribution. Fig. 1(b) plots the 
testing data points. Fig. 1(c) shows each region and 
misclassification data points. We can see that it totals 
about 7-8% misclassification. Therefore, we know that the 
proposed method can completely classify the data points 
well. 

5.2 Iris Dataset 
Here, we considered real data called an Iris dataset. 

This dataset consists of 50 samples from each of three 
species of Iris flowers: setosa, versicolor and virginica. 
Four features were measured from each sample (length and 
width of sepal and petal) in centimeters. Based on the 
combination of the four features, we developed a GP 
classifier model to distinguish one species from another. 

Fig. 2 shows the Iris dataset from different viewpoints. 
First, in order to train a model, we used a total of 90 
observations from three classes. And in order to verify the 
performance of the model, we selected 60 samples, except 
for ones used in the training set.  

Next, we want to measure the performance of our 
proposed model when classifying the Iris species. To find 
the best performance, we chose to find the optimal hyper-
parameters at the point where the marginal likelihood has a 
maximum using the EM algorithm. 

Table 2 shows the results of the Iris species classification. 
To calculate the rates, we estimate the number of correctly 
classified negatives and positives and divide by the total 
number of each species. 

We had to try many experiments to get meaningful 
results using randomly selected samples. Experimental 
results reveal that the average for a successful 
classification rate is about 98%. 

6. Conclusion 

This paper proposed a new inference algorithm that can 

simultaneously derive both a posterior distribution of a 
latent function and estimators of hyper-parameters in the 
Gaussian process classification model. The proposed 
algorithm was performed in two steps: the expectation step 
and the maximization step. In the expectation step, using a 
Bayesian formula and Laplace approximation, we derived 
the approximate posterior distribution of the latent function 
on the basis of the learning data. Furthermore, we 
considered a method of calculating a mean vector and 
covariance matrix of a latent function. In the classification 
step, using the derived posterior distribution of the latent 
function, we derived the maximum likelihood estimator for 
hyper-parameters necessary to define a covariance matrix.  

Finally, we conducted experiments by using synthetic 
data and Iris data in order to verify the performance of the 
proposed algorithm. Experimental results reveal that the 
proposed algorithm shows good performance on these 
datasets. Our future work will extend the proposed method 
to other video recognition problems, such as 3D human 
action recognition, gesture recognition, and surveillance 
systems. 
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Fig. 2. Iris dataset. 
 

Table 2. Classification of Iris Species. 

  setosa versicolor virginica 
Setosa 1 0 0 

Versicolor 0 0.96 0.04 
Virginica 0 0.01 0.99 
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