• 제목/요약/키워드: Laser scanning

검색결과 1,394건 처리시간 0.026초

Wear evaluation of CAD-CAM dental ceramic materials by chewing simulation

  • Turker, Izim;Kursoglu, Pinar
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권5호
    • /
    • pp.281-291
    • /
    • 2021
  • PURPOSE. To evaluate the wear of computer-aided design/computer-aided manufacturing (CAD-CAM) dental ceramic materials opposed by enamel as a function of increased chewing forces. MATERIALS AND METHODS. The enamel cusps of healthy human third molar teeth (n = 40) opposed by materials from CAD-CAM dental ceramic groups (n = 10), including Vita Enamic® (ENA), a polymer-infiltrated ceramic network (PICN); GC Cerasmart® (CERA), a resin nanoceramic; Celtra® Duo (DUO), a zirconia-reinforced lithium silicate (ZLS) ceramic; and IPS e.max ZirCAD (ZIR), a polycrystalline zirconia, were exposed to chewing simulation (1,200,000 cycles; 120 N load; 1 Hz frequency; 0.7 mm lateral and 2 mm vertical motion). The wear of both enamel cusps and materials was quantified using a 3D laser scanner, and the wear mechanisms were evaluated by scanning electron microscopy (SEM). The results were analysed using Welch ANOVA and Kruskal Wallis test (α = .05). RESULTS. ZIR showed lower volume loss (0.02 ± 0.01 mm3) than ENA, CERA and DUO (P = .001, P = .018 and P = .005, respectively). The wear of cusp/DUO [0.59 mm3 (0.50-1.63 mm3)] was higher than cusp/CERA [0.17 mm3 (0.04-0.41 mm3)] (P = .007). ZIR showed completely different wear mechanism in SEM. CONCLUSION. Composite structured materials such as PICN and ZLS ceramic exhibit more abrasive effect on opposing enamel due to their loss against wear, compared to uniform structured zirconia. The resin nano-ceramic causes the lowest enamel wear thanks to its flexible nano-ceramic microstructure. While zirconia appears to be an enamel-friendly material in wear volume loss, it can cause microstructural defects of enamel.

3차원 포인트 클라우드 기반 Alpha Shape와 Voxel을 활용한 단일 식생 부피 산정 (Estimation of Single Vegetation Volume Using 3D Point Cloud-based Alpha Shape and Voxel)

  • 장은경;안명희
    • Ecology and Resilient Infrastructure
    • /
    • 제8권4호
    • /
    • pp.204-211
    • /
    • 2021
  • 본 연구에서는 3차원 지상 라이다 스캐너를 통해 수집되는 포인트 클라우드를 활용하여 식생의 정보를 수집하였으며, 수집된 데이터를 기반으로 객체를 재구현하여 물리적 형상을 분석하였다. 이를 위해 원시 데이터의 필터링 단계별 최적의 데이터를 구축하였으며, 구축된 데이터를 활용하여 실제 부피와 Alpha Shape 및 Voxel 기법을 활용한 부피 산정 결과를 산정한 후 각각 비교하였다. 분석 결과, Alpha Shape를 적용하여 부피를 산정한 경우 데이터 필터링과 관계없이 실제 부피보다 과다 산정되는 것으로 나타났다. 또한 Voxel 기법을 활용할 경우 8차 필터링 후 실제 부피와 가장 유사한 것으로 나타났으며, 이후 필터링이 진행될수록 실제 부피에 비해 과소 산정되는 것을 알 수 있었다. 따라서 포인트 클라우드를 활용하여 객체를 재구현 할 경우, 대상이 되는 객체의 복잡한 형상으로 인한 내부 공극을 고려해야 하며, 필터링 과정에서 최적의 데이터 구축을 위한 필터링 과정에 반드시 주의할 필요가 있다.

Decontamination methods to restore the biocompatibility of contaminated titanium surfaces

  • Jin, Seong-Ho;Lee, Eun-Mi;Park, Jun-Beom;Kim, Kack-Kyun;Ko, Youngkyung
    • Journal of Periodontal and Implant Science
    • /
    • 제49권3호
    • /
    • pp.193-204
    • /
    • 2019
  • Purpose: The reaction of cells to a titanium implant depends on the surface characteristics of the implant which are affected by decontamination. The aim of this study was to evaluate the cytocompatibility of titanium disks treated with various decontamination methods, using salivary bacterial contamination with dental pellicle formation as an in vitro model. Methods: Sand-blasted and acid-etched (SA) titanium disks were used. Three control groups (pristine SA disks [SA group]; salivary pellicle-coated SA disks [pellicle group]; and biofilm-coated, untreated SA disks [NT group]) were not subjected to any decontamination treatments. Decontamination of the biofilm-coated disks was performed by 14 methods, including ultrasonic instruments, rotating instruments, an air-powder abrasive system, a laser, and chemical agents. MG63 cells were cultured in the presence of the treated disks. Cell proliferation assays were performed on days 2 and 5 of cell culture, and cell morphology was analyzed by immunofluorescence and scanning electron microscopy (SEM). A vascular endothelial growth factor (VEGF) assay was performed on day 5 of culture. Results: The cell proliferation assay revealed that all decontaminated disks, except for the 2 groups treated using a plastic tip, showed significantly less cell proliferation than the SA group. The immunofluorescence and SEM analyses revealed that most groups showed comparable cell density, with the exception of the NT group, in which the cell density was lower and bacterial residue was observed. Furthermore, the cells grown with tetracycline-treated titanium disks showed significantly lower VEGF production than those in the SA group. Conclusions: None of the decontamination methods resulted in cytocompatibility similar to that of pristine SA titanium. However, many methods caused improvement in the biocompatibility of the titanium disks in comparison with the biofilm-coated, untreated titanium disks. This suggests that decontamination is indispensable for the treatment of peri-implantitis, even if the original biocompatibility cannot be restored.

A Novel Method to Calculate the Carbides Fraction from Dilatometric Measurements During Cooling in Hot-Work Tool Steel

  • Zhao, Xiaoli;Li, Chuanwei;Han, Lizhan;Gu, Jianfeng
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1193-1201
    • /
    • 2018
  • Dilatometry is a useful technique to obtain experimental data concerning transformation. In this paper, a dilation conversional model was established to calculate carbides fraction in AISI H13 hot-work tool steel based on the measured length changes. After carbides precipitation, the alloy contents in the matrix changed. In the usual models, the content of carbon atoms after precipitation is considered as the only element that affects the lattice constant and the content of the alloy elements such as Cr, Mo, Mn, V are often ignored. In the model introduced in this paper, the alloying elements (Cr, Mo, Mn, V) changes caused by carbides precipitation are incorporated. The carbides were identified using scanning electron microscope and transmission electron microscope. The relationship between lattice constant of carbides and temperature are measured by high-temperature X-ray diffraction. The results indicate that the carbides observed in all specimens cooled at different rates are V-rich MC and Cr-rich $M_{23}C_6$, and most of them are V-rich MC, only very few are Cr-rich $M_{23}C_6$. The model including the effects of substitutional alloying elements shows a good improvement on carbides fraction predictions. In addition, lower cooling rate advances the carbides precipitation for AISI H13 specimens. The results between experiments and mathematical model agree well.

Development and evaluation of probiotic delivery systems using the rennet-induced gelation of milk proteins

  • Ha, Ho-Kyung;Hong, Ji-Young;Ayu, Istifiani Lola;Lee, Mee-Ryung;Lee, Won-Jae
    • Journal of Animal Science and Technology
    • /
    • 제63권5호
    • /
    • pp.1182-1193
    • /
    • 2021
  • The aims of this study were to develop a milk protein-based probiotic delivery system using a modified rennet-induced gelation method and to determine how the skim milk powder concentration level and pH, which can affect the rennet-induced intra- and inter-molecular association of milk proteins, affect the physicochemical properties of the probiotic delivery systems, such as the particle size, size distribution, encapsulation efficiency, and viability of probiotics in simulated gastrointestinal tract. To prepare a milk protein-based delivery system, skim milk powder was used as a source of milk proteins with various concentration levels from 3 to 10% (w/w) and rennet was added to skim milk solutions followed by adjustment of pH from 5.4 or 6.2. Lactobacillus rhamnosus GG was used as a probiotic culture. In confocal laser scanning microscopic images, globular particles with a size ranging from 10 ㎛ to 20 ㎛ were observed, indicating that milk protein-based probiotic delivery systems were successfully created. When the skim milk powder concentration was increased from 3 to 10% (w/w), the size of the delivery system was significantly (p < 0.05) increased from 27.5 to 44.4 ㎛, while a significant (p < 0.05) increase in size from 26.3 to 34.5 ㎛ was observed as the pH was increased from 5.4 to 6.4. An increase in skim milk powder concentration level and a decrease in pH led to a significant (p < 0.05) increase in the encapsulation efficiency of probiotics. The viability of probiotics in a simulated stomach condition was increased when probiotics were encapsulated in milk protein-based delivery systems. An increase in the skim milk powder concentration and a decrease in pH resulted in an increase in the viability of probiotics in simulated stomach conditions. It was concluded that the protein content by modulating skim milk powder concentration level and pH were the key manufacturing variables affecting the physicochemical properties of milk protein-based probiotic delivery systems.

Photoacoustic imaging of occlusal incipient caries in the visible and near-infrared range

  • da Silva, Evair Josino;de Miranda, Erica Muniz;de Oliveira Mota, Claudia Cristina Brainer;Das, Avishek;Gomes, Anderson Stevens Leonidas
    • Imaging Science in Dentistry
    • /
    • 제51권2호
    • /
    • pp.107-115
    • /
    • 2021
  • Purpose: This study aimed to demonstrate the presence of dental caries through a photoacoustic imaging system with visible and near-infrared wavelengths, highlighting the differences between the 2 spectral regions. The depth at which carious tissue could be detected was also verified. Materials and Methods: Fifteen permanent molars were selected and classified as being sound or having incipient or advanced caries by visual inspection, radiography, and optical coherence tomography analysis prior to photoacoustic scanning. A photoacoustic imaging system operating with a nanosecond pulsed laser as the light excitation source at either 532 nm or 1064 nm and an acoustic transducer at 5 MHz was developed, characterized, and used. En-face and lateral(depth) photoacoustic signals were detected. Results: The results confirmed the potential of the photoacoustic method to detect caries. At both wavelengths, photoacoustic imaging effectively detected incipient and advanced caries. The reconstructed photoacoustic images confirmed that a higher intensity of the photoacoustic signal could be observed in regions with lesions, while sound surfaces showed much less photoacoustic signal. Photoacoustic signals at depths up to 4 mm at both 532 nm and 1064 nm were measured. Conclusion: The results presented here are promising and corroborate that photoacoustic imaging can be applied as a diagnostic tool in caries research. New studies should focus on developing a clinical model of photoacoustic imaging applications in dentistry, including soft tissues. The use of inexpensive light-emitting diodes together with a miniaturized detector will make photoacoustic imaging systems more flexible, user-friendly, and technologically viable.

Ginsenosides attenuate bioenergetics and morphology of mitochondria in cultured PC12 cells under the insult of amyloid beta-peptide

  • Kwan, Kenneth Kin Leung;Yun, Huang;Dong, Tina Ting Xia;Tsim, Karl Wah Keung
    • Journal of Ginseng Research
    • /
    • 제45권4호
    • /
    • pp.473-481
    • /
    • 2021
  • Background: Mitochondrial dysfunction is one of the significant reasons for Alzheimer's disease (AD). Ginsenosides, natural molecules extracted from Panax ginseng, have been demonstrated to exert essential neuroprotective functions, which can ascribe to its anti-oxidative effect, enhancing central metabolism and improving mitochondrial function. However, a comprehensive analysis of cellular mitochondrial bioenergetics after ginsenoside treatment under Aβ-oxidative stress is missing. Methods: The antioxidant activities of ginsenoside Rb1, Rd, Re, Rg1 were compared by measuring the cell survival and reactive oxygen species (ROS) formation. Next, the protective effects of ginsenosides of mitochondrial bioenergetics were examined by measuring oxygen consumption rate (OCR) in PC12 cells under Aβ-oxidative stress with an extracellular flux analyzer. Meanwhile, mitochondrial membrane potential (MMP) and mitochondrial dynamics were evaluated by confocal laser scanning microscopy. Results: Ginsenoside Rg1 possessed the strongest anti-oxidative property, and which therefore provided the best protective function to PC12 cells under the Aβ oxidative stress by increasing ATP production to 3 folds, spare capacity to 2 folds, maximal respiration to 2 folds and non-mitochondrial respiration to 1.5 folds, as compared to Aβ cell model. Furthermore, ginsenoside Rg1 enhanced MMP and mitochondrial interconnectivity, and simultaneously reduced mitochondrial circularity. Conclusion: In the present study, these results demonstrated that ginsenoside Rg1 could be the best natural compound, as compared with other ginsenosides, by modulating the OCR of cultured PC12 cells during oxidative phosphorylation, in regulating MMP and in improving mitochondria dynamics under Aβ-induced oxidative stress.

Inconel 625 열용사 코팅 층의 고상입자 침식 거동 (Solid Particle Erosion Behavior of Inconel 625 Thermal Spray Coating Layers)

  • 박일초;한민수
    • 해양환경안전학회지
    • /
    • 제27권4호
    • /
    • pp.521-528
    • /
    • 2021
  • 본 연구는 손상된 선박용 절탄기 핀튜브에 대하여 보수를 목적으로 Inconel 625 아크 열용사 코팅기술 적용 후 실링처리를 실시하였다. 모재(Substrate), 열용사 코팅(Thermal Srpay Coating; TSC) 그리고 열용사 코팅+실링처리(TSC+Sealing) 시편에 대하여 내구성을 평가하기 위해 ASTM G76-05에 의거하여 고상입자 침식(Solid Particle Erosion; SPE) 실험을 실시하였다. 표면 손상 형상은 주사전자현미경과 3D 레이져 현미경을 통해 관찰했으며, 무게 감소량과 표면 거칠기 분석을 실시하여 내구성을 평가하였다. 그 결과 내구성은 TSC와 TSC+Sealing에 비해 Substrate가 우수하게 나타났으며, 이는 TSC 층 내에 존재하는 다수의 기공 결함에 기인한 것으로 판단된다. 또한 고상입자 침식 손상 메카니즘은 Substrate의 경우 연성 재질 특성인 소성변형과 피로에 의한 균열 생성이 동반되었으며, TSC와 TSC+Sealing의 경우 취성파괴 경향이 확인되었다.

N2 plasma treatment of pigments with minute particle sizes to improve their dispersion properties in deionized water

  • Zhang, Jingjing;Park, Yeong Min;Tan, Xing Yan;Bae, Mun Ki;Kim, Dong Jun;Jang, Tae Hwan;Kim, Min Su;Lee, Seung Whan;Kim, Tae Gyu
    • Journal of Ceramic Processing Research
    • /
    • 제20권6호
    • /
    • pp.589-596
    • /
    • 2019
  • Pigments with minute particle sizes, such as carbon black (CB) and pigment red 48:2 (P.R.48:2), are the most important types of pigment and have been widely used in many industrial applications. However, minute particles have large surface areas, high oil absorption and low surface energy. They therefore tend to be repellent to the vehicle and lose stability, resulting in significant increases in viscosity or reaggregation in the vehicle. Therefore, finding the best way to improve the dispersion properties of minute particle size pigments presents a major technical challenge. In this study, minute particle types of CB and P.R.48:2 were treated with nitrogen gas plasma generated via radio frequency-plasma enhanced chemical vapor deposition (RF-PECVD) to increase the dispersion properties of minute particles in deionized (DI) water. The morphologies and particle sizes of untreated and plasma treated particles were evaluated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The average distributions of particle size were measured using a laser particle sizer. Fourier transform infrared spectroscopy was carried out on the samples to identify changes in molecular interactions during plasma processing. The results of our analysis indicate that N2 plasma treatment is an effective method for improving the dispersibility of minute particles of pigment in DI water.

Hepatitis B Virus DNA Polymerase Displays an Anti-Apoptotic Effect by Interacting with Elongation Factor-1 Alpha-2 in Hepatoma Cells

  • Niu, Xianli;Nong, Shirong;Gong, Junyuan;Zhang, Xin;Tang, Hui;Zhou, Tianhong;Li, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.16-24
    • /
    • 2021
  • Hepatitis B virus (HBV) genome P-encoded protein HBV DNA polymerase (Pol) has long been known as a reverse transcriptase during HBV replication. In this study, we investigated the impact of HBV Pol on host cellular processes, mainly apoptosis, and the underlying mechanisms. We showed a marked reduction in apoptotic rates in the HBV Pol-expressed HepG2 cells compared to controls. Moreover, a series of assays, i.e., yeast two-hybrid, GST pull-down, co-immunoprecipitation, and confocal laser scanning microscopy, identified the host factor eEF1A2 to be associated with HBV Pol. Furthermore, knockdown of eEF1A2 gene by siRNA abrogated the HBV Pol-mediated anti-apoptotic effect with apoptosis induced by endoplasmatic reticulum (ER) stress-inducer thapsigargin (TG), thus suggesting that the host factor eEF1A2 is essential for HBV Pol's anti-apoptosis properties. Our findings have revealed a novel role for HBV Pol in its modulation of apoptosis through integrating with eEF1A2.