DOI QR코드

DOI QR Code

N2 plasma treatment of pigments with minute particle sizes to improve their dispersion properties in deionized water

  • Zhang, Jingjing (Department of Nano Fusion Technology, Pusan National University) ;
  • Park, Yeong Min (Department of Nano Fusion Technology, Pusan National University) ;
  • Tan, Xing Yan (Department of Nano Fusion Technology, Pusan National University) ;
  • Bae, Mun Ki (Department of Nano Fusion Technology, Pusan National University) ;
  • Kim, Dong Jun (Department of Nano Fusion Technology, Pusan National University) ;
  • Jang, Tae Hwan (Department of Nano Fusion Technology, Pusan National University) ;
  • Kim, Min Su (Department of Nano Fusion Technology, Pusan National University) ;
  • Lee, Seung Whan (Plasma Technology Research Center, National Fusion Research Institute) ;
  • Kim, Tae Gyu (Department of Nanomechatronics Engineering, Pusan National University)
  • Received : 2019.06.13
  • Accepted : 2019.09.26
  • Published : 2019.12.01

Abstract

Pigments with minute particle sizes, such as carbon black (CB) and pigment red 48:2 (P.R.48:2), are the most important types of pigment and have been widely used in many industrial applications. However, minute particles have large surface areas, high oil absorption and low surface energy. They therefore tend to be repellent to the vehicle and lose stability, resulting in significant increases in viscosity or reaggregation in the vehicle. Therefore, finding the best way to improve the dispersion properties of minute particle size pigments presents a major technical challenge. In this study, minute particle types of CB and P.R.48:2 were treated with nitrogen gas plasma generated via radio frequency-plasma enhanced chemical vapor deposition (RF-PECVD) to increase the dispersion properties of minute particles in deionized (DI) water. The morphologies and particle sizes of untreated and plasma treated particles were evaluated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The average distributions of particle size were measured using a laser particle sizer. Fourier transform infrared spectroscopy was carried out on the samples to identify changes in molecular interactions during plasma processing. The results of our analysis indicate that N2 plasma treatment is an effective method for improving the dispersibility of minute particles of pigment in DI water.

Keywords

References

  1. W.B. Wiegand and J.W. Synder, Ind. Eng. Chem., 26[4] (1934) 413-419. https://doi.org/10.1021/ie50292a012
  2. W. Herbst, K. Hunger, and G. Wilker, Industrial organic pigments : production, properties, applications. Wiley-VCH, 2004.
  3. J.V. Koleske, Ed., Paint and Coating Testing Manual: 15th. Edition of the Gardner-Sward Handbook. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2012.
  4. J. Bieleman, Ed., Additives for coatings. Wiley-VCH, 2000.
  5. N. Steiert and K. Landfester, Macromol. Mater. Eng., 292 [10-11] (2007) 1111-1125. https://doi.org/10.1002/mame.200700138
  6. Y. Zhang, S. Ge, B. Tang, T. Koga, M.H. Rafailovich, J.C. Sokolov, D.G. Peiffer, Z. Li, A.J. Dias, K.O. McElrath, M.Y. Lin, S.K. Satija, S.G. Urquhart, H. Ade, and D. Nguyen, Macromolecules, 34[20] (2001) 7056-7065. https://doi.org/10.1021/ma010183p
  7. T. Whelan, Polymer Technology Dictionary. Dordrecht: Springer Netherlands, 1994.
  8. C. Sauter, M.A. Emin, H.P. Schuchmann, and S. Tavman, Ultrason. Sonochem. 15[4] (2008) 517-523. https://doi.org/10.1016/j.ultsonch.2007.08.010
  9. H. Barthel, L. Rsch, and J. Weis, "Fumed Silica - Production, Properties, and Applications," in Organosilicon Chemistry II, Weinheim, Germany: Wiley-VCH Verlag GmbH, 1995, pp. 761-778.
  10. S. Tsantilis and S.E. Pratsinis, Langmuir 20[14] (2004) 5933-5939. https://doi.org/10.1021/la036389w
  11. Wiley, Processing and Finishing of Polymeric Materials. John Wiley & Sons, 2012.
  12. S.-H. Fu and K.-J. Fang, J. Dispers. Sci. Technol. 29[1] (2008) 115-119. https://doi.org/10.1080/01932690701688656
  13. K. Oh-Ishi and T.R. McNelley, Metall. Mater. Trans. A 35[9] (2004) 2951-2961. https://doi.org/10.1007/s11661-004-0242-1
  14. M. Yu et al., Electrochem. Commun. 34 (2013) 312-315. https://doi.org/10.1016/j.elecom.2013.07.013
  15. Y. Lin, T.W. Smith, and P. Alexandridis, Langmuir 18[16] (2002) 6147-6158. https://doi.org/10.1021/la011671t
  16. N. Tsubokawa, Prog. Polym. Sci. 17[3] (1992) 417-470. https://doi.org/10.1016/0079-6700(92)90021-P
  17. P.E. Fanning and M.A. Vannice, Carbon N. Y. 31[5] (1993) 721-730. https://doi.org/10.1016/0008-6223(93)90009-Y
  18. M. Naito, T. Yokoyama, K. Hosokawa, and K. Nogi, Nanoparticle Technology Handbook, 3rd ed. Elsevier, 2018.
  19. A. Liang, X. Jiang, X. Hong, Y. Jiang, Z. Shao, and D. Zhu, Coatings 8[1] (2018) 33. https://doi.org/10.3390/coatings8010033
  20. A.M. Wintermyer and E.B. Kinter, Public Roads 28[3] (1954) 55.
  21. E.M. Liston, L. Martinu, and M.R. Wertheimer, J. Adhes. Sci. Technol. 7[10] (1993) 1091-1127. https://doi.org/10.1163/156856193X00600
  22. S.-J. Park, K.-S. Cho, and S.-K. Ryu, Carbon N. Y. 41[7] (2003) 1437-1442. https://doi.org/10.1016/S0008-6223(03)00088-5
  23. I. Arcona, M. Mozeticb, and A. Kodreb, Vacuum 80[1-3] (2005) 178-183. https://doi.org/10.1016/j.vacuum.2005.08.012
  24. C.-W. Kan and W.-S. Man, Appl. Sci. 8[4] (2018) 552. https://doi.org/10.3390/app8040552
  25. J. Williams, W. Broughton, T. Koukoulas, and S.S. Rahatekar, J. Mater. Sci. 48[3] (2013) 1005-1013. https://doi.org/10.1007/s10853-012-6830-3
  26. S.-J. Park and J.-S. Kim, J. Colloid Interface Sci. 244[2] (2001) 336-341. https://doi.org/10.1006/jcis.2001.7920
  27. R.C. Chatelier, X. Xie, T.R. Gengenbach, and H.J. Griesser, Langmuir 11[7] (1995) 2585-2591. https://doi.org/10.1021/la00007a043
  28. R. Asmatulu and A. Jabbarnia, J. Mater. Sci. Technol. Res. 2[2] (2016) 43-51. https://doi.org/10.15377/2410-4701.2015.02.02.3
  29. J. Coates, "Interpretation of Infrared Spectra, A Practical Approach," in Encyclopedia of Analytical Chemistry, Chichester, UK: John Wiley & Sons, Ltd, 2006.
  30. I. Shimada, T. Takahagi, M. Fukuhara, K. Morita, and A. Ishitani, J. Polym. Sci. Part A Polym. Chem. 24[8] (1986) 1989-1995. https://doi.org/10.1002/pola.1986.080240819
  31. J.M. O'Reilly and R.A. Mosher, Carbon N. Y. 21[1] (1983) 47-51. https://doi.org/10.1016/0008-6223(83)90155-0
  32. K. Fatyeyeva, A. Dahi, C. Chappey, D. Langevin, J.-M. Valleton, F. Poncin-Epaillard, and S. Marais, RSC Adv. 4[59] (2014) 31036-31046. https://doi.org/10.1039/C4RA03741C
  33. R. Newman, J. Am. Inst. Conserv. 19[1] (1979) 42-62. https://doi.org/10.2307/3179572
  34. F.L. Leite, C.C. Bueno, A.L. Da Roz, E.C. Ziemath, and O.N. Oliveira, Int. J. Mol. Sci. 13[12] (2012) 12773-12856. https://doi.org/10.3390/ijms131012773
  35. I. Yildirim, "Surface Free Energy Characterization of Powders." Virginia Tech, 04-May-2001.
  36. Y. Lu, N. Tang, R. Lian, J. Qi, and W. Wu, Int. J. Pharm. 465[1-2] (2014) 25-31. https://doi.org/10.1016/j.ijpharm.2014.02.004