• Title/Summary/Keyword: Laser crystallization

Search Result 164, Processing Time 0.031 seconds

An In-Situ Optical Study on Silicon Crystallization Process Using an Excimer Laser (Excimer Laser응용 실리콘 결정화 공정에 대한 In-Situ 광학적 연구)

  • Kim, W.J.;Y, C.-Hwan;Park, S.H.;Kim, H.J.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1407-1411
    • /
    • 2003
  • Due to the heat confinement in the shallow region of the target for a short time scale, pulsed laser annealing has received increasing interest for the fabrication of poly-Si thin film transistors(TFTs) on glass as a low cost substrate in the flat panel displays. The formation and growth mechanisms of poly silicon(poly-Si) grains in thin films are investigated using an excimer laser crystallization system. To understand the crystallization mechanism, the grain formations are observed by FESEM analysis. The optical reflectance and transmittance during the crystallization process are measured using HeNe laser optics. A two-step ELC(Excimer Laser Crystallization) process is applied to enhance the grain formation uniformity.

  • PDF

An Optical Study on ELC Process of Amorphous Silicon (비정질 실리콘의 ELC 공정에 대한 광학적 연구)

  • 김우진;윤창환;박승호;김형준
    • Laser Solutions
    • /
    • v.6 no.2
    • /
    • pp.9-17
    • /
    • 2003
  • Due to the heat confinement in the shallow region of the target for a short time scale, pulsed laser annealing has received an increasing interest for the fabrication of poly-Si thin film transistors(TFTs) on glass as a low cost substrate in the flat panel displays. The formation and growth mechanisms of poly silicon(poly-Si) grains in thin films are investigated using an excimer laser crystallization system. To understand the crystallization mechanism, the grain formations are observed by FESEM photography. The optical reflectance and transmittance during the crystallization process are measured using HeNe laser optics. A two-step ELC(Excimer Laser Crystallization) process is applied to enhance the grain formation uniformity.

  • PDF

Effect of Pulsed Nd:YAG Laser Energy on Crystallization in $Li_2O - Al_2O_3 - SiO_2$ Glass

  • Lee, Yong--Su;Kang, Won--Ho
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.07a
    • /
    • pp.104-109
    • /
    • 2001
  • A 355 nm (3.5 eV) neodymium:yttrium aluminum gamet laser, produced by a harmonic generator, was used to create silver metallic particles as seeds for nucleation in photosensitive glass containing Ag+ and Ce3+ ions. The pulse width and frequency of the laser were 8 ns and 10 Hz, respectively. Heat treatment was conducted at 570 C for 1 h, following laser irradiation, to produce crystalline growth, after which a LiAlSi3O8 crystal phase appeared in the laser-irradiated Li2O A1203 SiO2 glass. For the Present study, we compared the effect of laser-induced crystallization on glass crystallization with that of spontaneous crystallization by heat treatment.

  • PDF

Application of 532 nm YAG-Laser Annealing to Crystallization of Amorphous Si Thin Films Deposited on Glass Substrates

  • Lee, Jong-Won;So, Byung-Soo;Chung, Ha-Seung;Hwang, Jin-Ha
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.113-116
    • /
    • 2008
  • A 532 nm Nd-YAG laser was applied to crystallize amorphous Si thin films in order to evaluate the applicability of a Nd-YAG laser to low-temperature polycrystalline Si technology. The irradiation of a green laser was controlled during the crystallization of amorphous Si thin films deposited onto glass substrates in a sophisticated process. Raman spectroscopy and UV-Visible spectrophotometry were employed to quantify the degree of crystallization in the Si thin films in terms of its optical transmission and vibrational characteristics. The effectiveness of the Nd-YAG laser is suggested as a feasible alternative that is capable of crystallizing the amorphous Si thin films.

Trend of Crystallization Technology and Large Scale Research for Fabricating Thin Film Transistors of AMOLED Displays (AMOLED 디스플레이의 박막트랜지스터 제작을 위한 결정화 기술 동향 및 대형화 연구)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin;Min, Youngsil
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.5
    • /
    • pp.117-124
    • /
    • 2019
  • This paper discusses recent trends in the fabrication of semiconducting materials among the components of thin film transistors used in AMOLED display. In order to obtain a good semiconductor film, it is necessary to change the amorphous silicon into polycrystalline silicon. There are two ways to use laser and heat. Laser-based methods include sequential lateral solidification (SLS), excimer laser annealing (ELA), and thin-beam directional crystallization (TDX). Solid phase crystallization (SPC), super grain silicon (SGS), metal induced crystallization (MIC) and field aided lateral crystallization (FALC) were crystallized using heat. We will also study research for manufacturing large AMOLED displays.

Laser Crystallization of a-Si:H films prepared at Ultra Low Temperature($<150^{\circ}C$) by Catalytic CVD

  • Lee, Sung-Hyun;Hong, Wan-Shick;Kim, Jong-Man;Lim, Hyuck;Park, Kuyng-Bae;Cho, Chul-Lae;Lee, Kyung-Eun;Kim, Do-Young;Jung, Ji-Sim;Kwon, Jang-Yeon;Noguch, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1116-1118
    • /
    • 2005
  • We studied laser crystallization of amorphous silicon films prepared at ultra low temperatures ($<150^{\circ}C$). Amorphous silicon films having a low content of hydrogen were deposited by using catalytic chemical vapor deposition method. Influence of process parameters on the hydrogen content was investigated. Laser crystallization was performed dispensing with the preliminary dehydrogenation process. Crystallization took place at a laser energy density value as low as $70\;mJ/cm^2$, and the grain size increased with increasing the laser energy. The ELA crystallization of Catalytic CVD a-Si film is a promising candidate for Poly-Si TFT in active-matrix flexible display on plastic substrates.

  • PDF

Crystallization in Li$_2$O-A1$_2$O$_3$-SiO$_2$ Glass induced by 355 nm Nd:YAG Laser Irradiation

  • Lee, Yong-Su;Kang, Won-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.43-46
    • /
    • 2000
  • Nd:YAG laser of 355 nm wavelength, which amounts to 3.5 eV, produced by a harmonic generator was used to create Ag metallic particles as seeds for nucleation in photosensitive glass containing $Ag^+$ and $Ce^{3+}$ . The pulse widths and frequency of the laser were 8ns and 10 Hz, respectively. For crystalline growth, heat-treatment following laser irradiation was carried out at $570^{\circ}C$ for 1h. Then, the $LiAlSi_3O^8$ crystal phase appeared in the laser irradiated lithium aluminum silicate glass. We present the effect of laser-induced nucleation compared with spontaneous nucleation by heat treatment fur crystallization in the glass.

  • PDF

Crystallization in Li20-A1203-Si02 Glass induced by 355nm Nd:YAG Laser Irradiation

  • Lee, Yong-Su;Kang, Won-Ho;Song, Sun-Dal
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.112-117
    • /
    • 2000
  • Nd:YAG laser of 355nm wavelength, which amounts to 3.5eV, produced by a harmonic generator was used to create Ag metallic particles as seeds for nucleation in photosensitive glass containing Ag+ and Ce3+. The pulse widths and frequency of the laser were 8ns and 10Hz, respectively. For crystalline growth, heat-treatment following laser irradiation was carried out at $570^{\circ}C$ fur 1h. Then, the LiAlSi3O8. crystal phase appeared in the laser irradiated lithium aluminum silicate glass. We present the effect of laser-induced nucleation compared with spontaneous nucleation by heat treatment for crystallization in the glass.

  • PDF

High Performance of Crystallization for LPTS TFTs Using Solid Green Laser

  • Nishida, K.;Kawakami, R.;Izawa, J.;Kawaguchi, N.;Matsuzaka, F.;Masaki, M.;Morita, M.;Yoshinouchi, A.;Kawasaki, Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.911-914
    • /
    • 2007
  • We developed the laser annealing system using green laser of 261W(5kHz) and 75.5mJ/pulse(2kHz). We confirmed that this system makes it possible to form two kinds(large or uniformed grain) of poly-Si by changing its polarized directions. By using ${\mu}-crystal-Si$ as irradiated films, grain size uniformity is better than that using a-Si.

  • PDF