• 제목/요약/키워드: Large Deformable Beam

검색결과 10건 처리시간 0.023초

Nonlinear Dynamic Analysis of a Large Deformable Beam Using Absolute Nodal Coordinates

  • Jong-Hwi;Il-Ho;Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권4호
    • /
    • pp.50-60
    • /
    • 2004
  • A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires. In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic stress during flexible multibody simulation is presented based on Euler-Bernoulli beam theory, and its reliability is verified by a commercial program NASTRAN. This method is significant in that the structural and multibody dynamics models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on which a multibody system moves along its length is presented as a numerical example.

형상기억합금 작동기로 작동되는 복합재 보의 형상변형 (Morphing of Composite Beam actuated by SMA Actuator)

  • 김상헌;조맹효
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.123-126
    • /
    • 2004
  • Two-way shape memory effect(TWSME) under residual stresses are considered in the present study. The structure using two-way shape memory effect concept returns to its initial shape by increasing or decreasing temperature under the initially given residual stress. In the present study, we use a thermo-mechanical constitutive equation of SMA and laminated composite beam are considered as simple morphing structural components which are based on large deformable 2D composite beam theory. Numerical results of fully coupled SMA-composite structures are presented.

  • PDF

Study on the Frame Structure Modeling of the Beam Element Formulated by Absolute Nodal Coordinate Approach

  • Takahashi Yoshitaka;Shimizu Nobuyuki;Suzuki Kohei
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.283-291
    • /
    • 2005
  • Accurate seismic analyses of large deformable moving structures are still unsolved problems in the field of earthquake engineering. In order to analyze these problems, the nonlinear finite element method formulated by the absolute nodal coordinate approach is noticed. Because, this formulation has several advantages over the standard procedures on mass matrix, elastic forces and damping forces in the case of large displacement problems. But, it has not been fully studied to build frame structure models by using beam elements in the absolute nodal coordinate formulation. In this paper, we propose the connecting method of the beam elements formulated by the absolute nodal coordinate. The coordinate transformation matrix of this element is introduced into the frame structure. This beam element has the characteristic that the mass matrix and bending stiffiness matrix are constant even if in the case of large displacement problems, and this characteristic is being kept after the transformation. In order to verify the proposed method, we show the numerical simulation results of frame structures for a vibration problem and a large displacement problem.

다물체 시스템이 이동하는 유연한 케이블의 동역학 해석에 관한 연구 (Dynamic Analysis of a Very Flexible Cable Carrying A Moving Multibody System)

  • 서종휘;정일호;한형석;박태원
    • 한국소음진동공학회논문집
    • /
    • 제14권2호
    • /
    • pp.150-156
    • /
    • 2004
  • In this paper, the dynamic behavior of a very flexible cable due to moving multibody system along its length is presented. The very deformable motion of a cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. Formulation for the sliding joint between a very flexible beam and a rigid body is derived. In order to formulate the constraint equations of this joint, a non-generalized coordinate, which has no inertia or forces associated with this coordinate, is used. The modeling of this sliding joint is very important to many mechanical applications such as the ski lifts. cable cars, and pulley systems. A multibody system moves along an elastic cable using this sliding joint. A numerical example is shownusing the developed analysis program for flexible multibody systems that include a large deformable cable.

접촉 오차 벡터를 이용한 비선형 변형체의 마찰접촉 해석 (Analysis of Frictional Contact Problems of Nonlinearly Deformable Bodies by Using Contact Error Vector)

  • Lee, Kisu;Kim, Bang-Won
    • 한국전산구조공학회논문집
    • /
    • 제13권3호
    • /
    • pp.305-319
    • /
    • 2000
  • 본 논문에서는 대변형 비선형 변형체의 마찰 접촉 문제의 해법을 제시하였다. 접촉 가능 점에서 접촉조건을 접촉오차 벡터를 이용하여 표시하였으며, 이러한 접촉오차 벡터를 0으로 단조 감소시키기 위하여 반복계산법을 사용하였다. 각 반복계산은 2개의 단계로 구성되어 있다 : 첫 단계에서는 이미 구해진 해의 기하학적 모양에서 얻어지는 접촉오차 벡터를 이용하여 접촉력을 수정하고, 두 번째 단계에서는 첫 단계의 접촉력을 이용하여 평형방정식을 풀어서 변위 및 접촉오차를 계산하는 것이다. 본 반복계산법에 의하여 정확한 해를 얻을 수 있음을 설명하였으며, 강소성 막 및 비선형 탄성보를 사용하여 예제계산을 수행하였다.

  • PDF

절대절점좌표를 이용한 탄성 다물체동역학 해석에서의 동응력 이력 계산에 관한 연구 (Computation of Dynamic Stress in Flexible Multi-body Dynamics Using Absolute Nodal Coordinate Formulation)

  • 서종휘;정일호;박태원
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.114-121
    • /
    • 2004
  • Recently, the finite element absolute nodal coordinate formulation (ANCF) was developed for the large deformation analysis of flexible bodies in multi-body dynamics. This formulation is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. In this paper, a computation method of dynamic stress in flexible multi-body dynamics using absolute nodal coordinate formulation is proposed. Numerical examples, based on an Euler-Bernoulli beam theory, are shown to verify the efficiency of the proposed method. This method can be applied for predicting the fatigue life of a mechanical system. Moreover, this study demonstrates that structural and multi-body dynamic models can be unified in one numerical system.

Assessment of geometric nonlinear behavior in composite beams with partial shear interaction

  • Jie Wen;Abdul Hamid Sheikh;Md. Alhaz Uddin;A.B.M. Saiful Islam;Md. Arifuzzaman
    • Steel and Composite Structures
    • /
    • 제48권6호
    • /
    • pp.693-708
    • /
    • 2023
  • Composite beams, two materials joined together, have become more common in structural engineering over the past few decades because they have better mechanical and structural properties. The shear connectors between their layers exhibit some deformability with finite stiffness, resulting in interfacial shear slip, a phenomenon known as partial shear interaction. Such a partial shear interaction contributes significantly to the composite beams. To provide precise predictions of the geometric nonlinear behavior shown by two-layered composite beams with interfacial shear slips, a robust analytical model has been developed that incorporates the influence of significant displacements. The application of a higher-order beam theory to the two material layers results in a third-order adjustment of the longitudinal displacement within each layer along the depth of the beam. Deformable shear connectors are employed at the interface to represent the partial shear interaction by means of a sequence of shear connectors that are evenly distributed throughout the beam's length. The Von-Karman theory of large deflection incorporates geometric nonlinearity into the governing equations, which are then solved analytically using the Navier solution technique. Suggested model exhibits a notable level of agreement with published findings, and numerical outputs derived from finite element (FE) model. Large displacement substantially reduces deflection, interfacial shear slip, and stress values. Geometric nonlinearity has a significant impact on beams with larger span-to-depth ratio and a greater degree of shear connector deformability. Potentially, the analytical model can accurately predict the geometric nonlinear responses of composite beams. The model has a high degree of generality, which might aid in the numerical solution of composite beams with varying configurations and shear criteria.

Adaptive Optics in Institute of Optics and Electronics, China

  • Jiang, Wenhan;Ling, Ning
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2000년도 하계학술발표회
    • /
    • pp.3-3
    • /
    • 2000
  • Adaptive Optical (AO) technology can compensate for wave-front errors in real-time to improve image and beam quality. The research and development on AO in China began in 1979. In 1980, the first laboratory on AO in China was established in Institute of Optics and Electronics (IOE), Chinese Academy of Sciences (CAS). Since then several AO systems have been built in this Laboratory. The 19-element system is the first AO system in the world ever used in inertial confinement fusion (ICF) facility in our knowledge. It corrects the static error of this large laser engineering. The 21-element system was firstly tested at the 1.2m telescope of Kunming Observatory in 1990 and then up-dated as an IR AO system installed at the 2.16m telescope of Beijing Observatory. The 37-element system was used with a turbulence cell in Laboratory on Atmospheric Optics in Hefei to conduct elementary research on Atmospheric Optics. The 61-element system for astronomical observation is newly developed. It has been successfully installed at the 1.2m telescope of Kunming Observatory and a laser guide star system will be integrated with the system. A compact AO system using our newly developed miniature DM for high resolution ophthalmic imaging of retina is also being built. The key elements of these AO systems, deformable mirrors and fast-steering mirrors, are all developed in this Laboratory. In this talk, the main configurations of these AO systems, some test results as well as the specifications of these active mirrors will be presented.

  • PDF

Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part I: FE model establishment and validations

  • Liu, X.;Wu, H.;Qu, Y.G.;Xu, Z.Y.;Sheng, J.H.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.381-396
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part I, finite element (FE) models establishment and validations for both the aircrafts and NPP buildings are performed. (i) Airbus A320 and A380 aircrafts are selected as the representative medium and large commercial aircrafts, and the corresponding fine FE models including the skin, beam, fuel and etc. are established. By comparing the numerically derived impact force time-histories with the existing published literatures, the rationality of aircrafts models is verified. (ii) Fine FE model of the Chinese Zhejiang Sanao NPP buildings is established, including the detailed structures and reinforcing arrangement of both the containment and auxiliary buildings. (iii) By numerically reproducing the existing 1/7.5 scaled aircraft model impact tests on steel plate reinforced concrete (SC) panels and assessing the impact process and velocity time-history of aircraft model, as well as the damage and the maximum deflection of SC panels, the applicability of the existing three concrete constitutive models (i.e., K&C, Winfrith and CSC) are evaluated and the superiority of Winfrith model for SC panels under deformable missile impact is verified. The present work can provide beneficial reference for the integral aircraft crash analyses and structural damage assessment in the following two parts of this paper.

뇌암 및 두경부암 체적변조방사선치료시 Jaw-Tracking 기법의 선량학적 유용성 평가 (Evaluation of the Jaw-Tracking Technique for Volume-Modulated Radiation Therapy in Brain Cancer and Head and Neck Cancer)

  • 김희성;문재희;김군주;서정민;이정진;최재훈;김성기;장인기
    • 대한방사선치료학회지
    • /
    • 제30권1_2호
    • /
    • pp.177-183
    • /
    • 2018
  • 목 적 : 체적변조회전방사선치료(VMAT)는 종양의 모양에 맞게 균일하면서도 정밀한 방사선 조사를 하면서 동시에 정상조직의 방사선 손상위험을 줄이는 장점이 있어 뇌암, 두경부암 및 전립선암 등의 종양과 정상장기가 가까운 암의 치료에 사용되고 있다. 본 연구의 목적은 뇌암 및 두경부암 환자의 VMAT 방사선 치료 시 Jaw-Tracking technique(JTT)의 선량학적 유용성을 평가하고자 한다. 대상 및 방법 : 본원에서 VMAT 치료기법으로 방사선치료를 받은 뇌암 및 두경부암 환자 8명을 선택하였다. 환자의 종양 및 정상 장기의 윤곽그리기(contouring) 정보를 Velocity(Varian, USA)의 deformable registration을 이용하여 Rando phantom에 fusion하였다. Varian Eclipse(ver 15.5, Varian, USA)를 사용하여 Jaw-Tracking 사용 유무를 제외하고 환자 치료 시 사용한 beam parameter와 동일하게 치료계획을 진행하였다. 평가 지표로써 target과 OAR의 최대선량, 평균선량을 사용하여 비교하였고 치료계획 검증을 위해 Portal dosimetry를 시행하였다. 결 과 : JTT를 사용했을 경우는 Static-Jaw technique(SJT)을 사용하였을 경우보다 OAR의 상대 선량이 각각 평균선량은 5.24 %, 최대선량은 7.05 % 감소한 것으로 나타났다. 다양한 OAR에서 평균선량과 최대선량의 감소의 범위는 각각 0.01~3.16 Gy, 0.12~6.27 Gy로 나타났다. Target의 경우는 JTT의 경우가 SJT보다 GTV, CTV, PTV의 최대선량이 각각 0.17 %, 0.43 %, 0.37 % 감소하였으며, 평균선량은 0.24 %, 0.47 %, 0.47% 감소하였다. 감마분석은 3 %/3 mm, 통과율 95 % 이상을 통과 기준으로 설정하였고 JTT, SJT 통과율은 각각 $98{\pm}1.73%$, $97{\pm}1.83%$이었다. 실험에 적용된 모든 OAR의 선량을 비교해 보았을 때, JTT을 사용하였을 경우가 SJT보다 MLC 외에 추가적인 jaw 차폐로 인하여 선량이 유의미하게 줄어들었다는 것을 알 수 있었다. 결 론 : VMAT 치료계획을 이용한 방사선 치료시 뇌암, 두경부암과 같이 종양과 정상 장기가 인접한 경우와 MLC를 통한 누설선량을 증가시킬 수 있는 넓은 조사야 및 높은 에너지의 사용을 필요로 하는 방사선 치료 시 JTT를 적용함으로써 종양주변 정상조직의 피폭선량을 낮추고 이로 인해 PTV의 target coverage를 높일 수 있을 것이라 판단된다.

  • PDF