• Title/Summary/Keyword: Lactone

Search Result 336, Processing Time 0.024 seconds

Potential of fascaplysin and palauolide from Fascaplysinopsis cf reticulata to reduce the risk of bacterial infection in fish farming

  • Mai, Tepoerau;Toullec, Jordan;Wynsberge, Simon Van;Besson, Marc;Soulet, Stephanie;Petek, Sylvain;Aliotti, Emmanuelle;Ekins, Merrick;Hall, Kathryn;Erpenbeck, Dirk;Lecchini, David;Beniddir, Mehdi A.;Saulnier, Denis;Debitus, Cecile
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.12
    • /
    • pp.30.1-30.11
    • /
    • 2019
  • Marine natural products isolated from the sponge Fascaplysinopsis cf reticulata, in French Polynesia, were investigated as an alternative to antibiotics to control pathogens in aquaculture. The overuse of antibiotics in aquaculture is largely considered to be an environmental pollution, because it supports the transfer of antibiotic resistance genes within the aquatic environment. One environmentally friendly alternative to antibiotics is the use of quorum sensing inhibitors (QSIs). Quorum sensing (QS) is a regulatory mechanism in bacteria which control virulence factors through the secretion of autoinducers (AIs), such as acyl-homoserine lactone (AHL) in gram-negative bacteria. Vibrio harveyi QS is controlled through three parallel pathways: HAI-1, AI-2, and CAI-1. Bioassay-guided purification of F. cf reticulata extract was conducted on two bacterial species, i.e., Tenacibaculum maritimum and V. harveyi for antibiotic and QS inhibition bioactivities. Toxicity bioassay of fractions was also evaluated on the freshwater fish Poecilia reticulata and the marine fish Acanthurus triostegus. Cyclohexanic and dichloromethane fractions of F. cf reticulata exhibited QS inhibition on V. harveyi and antibiotic bioactivities on V. harveyi and T. maritimum, respectively. Palauolide (1) and fascaplysin (2) were purified as major molecules from the cyclohexanic and dichloromethane fractions, respectively. Palauolide inhibited QS of V. harveyi through HAI-1 QS pathway at 50 ㎍ ml-1 (26 μM), while fascaplysin affected the bacterial growth of V. harveyi (50 ㎍ ml-1) and T. maritimum (0.25 ㎍). The toxicity of fascaplysin-enriched fraction (FEF) was evaluated and exhibited a toxic effect against fish at 50 ㎍ ml-1. This study demonstrated for the first time the QSI potential of palauolide (1). Future research may assess the toxicity of both the cyclohexanic fraction of the sponge and palauolide (1) on fish, to confirm their potential as alternative to antibiotics in fish farming.

Polymerization of Hydrosilanes and Vinyl Monomers in the Presence of Transition Metal Complex

  • Kim, Myoung-Hee;Lee, Jun;Cha, Hyo Chang;Shin, Joong-Hyeok;Woo, Hee-Gweon
    • Journal of Integrative Natural Science
    • /
    • v.2 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • This minireview provides the chosen examples of our recent discoveries in the polymerization of hydrosilanes, dihydrosilole, lactones, and vinyl derivatives using various catalysts. Hydrosilanes and lactones copolymerize to give poly(lactone-co-silane)s with $Cp_2MCl_2$/Red-Al (M = Ti, Zr, Hf) catalyst. Hydrosilanes (including dihydrosilole) reduce noble metal complexes (e.g., $AgNO_3$, $Ag_2SO_4$, $HAuCl_4$, $H_2PtCl_6$) to give nanoparticles along with silicon polymers such as polysilanes, polysilole, polysiloxanes (and silicas) depending on the reaction conditions. Interestingly, phenylsilane dehydrocoupled to polyphenylsilane in the inert nitrogen atmosphere while phenylsilane dehydrocoupled to silica in the ambient air atmosphere. $Cp_2M/CX_4$ (M = Fe, Co, Ni; X = Cl, Br, I) combination initiate the polymerization of vinyl monomers. In the photopolymerization of vinyl monomers using $Cp_2M/CCl_4$ (M = Fe, Co, Ni), the photopolymerization of MMA initiated by $Cp_2M/CCl_4$ (M = Fe, Co, Ni) shows while the polymerization yield decreases in the order $Cp_2Fe$ > $Cp_2Ni$ > $Cp_2Co$, the molecular weight decreases in the order $Cp_2Co$ > $Cp_2Ni$ > $Cp_2Fe$. For the photohomopolymerization and photocopolymerization of MA and AA, the similar trends were observed. The photopolymerizations are not living. Many exciting possibilities remain to be examined and some of them are demonstrated in the body of the minireview.

  • PDF

Biotransformation of natural polyacetylene in red ginseng by Chaetomium globosum

  • Wang, Bang-Yan;Yang, Xue-Qiong;Hu, Ming;Shi, Li-Jiao;Yin, Hai-Yue;Wu, Ya-Mei;Yang, Ya-Bin;Zhou, Hao;Ding, Zhong-Tao
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.770-774
    • /
    • 2020
  • Background: Fermentation has been shown to improve the biological properties of plants and herbs. Specifically, fermentation causes decomposition and/or biotransformation of active metabolites into high-value products. Polyacetylenes are a class of polyketides with a pleiotropic profile of bioactivity. Methods: Column chromatography was used to isolate compounds, and extensive NMR experiments were used to determine their structures. The transformation of polyacetylene in red ginseng (RG) and the production of cazaldehyde B induced by the extract of RG were identified by TLC and HPLC analyses. Results: A new metabolite was isolated from RG fermented by Chaetomium globosum, and this new metabolite can be obtained by the biotransformation of polyacetylene in RG. Panaxytriol was found to exhibit the highest antifungal activity against C. globosum compared with other major ingredients in RG. The fungus C. globosum cultured in RG extract can metabolize panaxytriol to Metabolite A to survive, with no antifungal activity against itself. Metabolites A and B showed obvious inhibition against NO production, with ratios of 42.75 ± 1.60 and 63.95 ± 1.45% at 50 µM, respectively. A higher inhibitory rate on NO production was observed for Metabolite B than for a positive drug. Conclusion: Metabolite A is a rare example of natural polyacetylene biotransformation by microbial fermentation. This biotransformation only occurred in fermented RG. The extract of RG also stimulated the production of a new natural product, cazaldehyde B, from C. globosum. The lactone in Metabolite A can decrease the cytotoxicity, which was deemed to be the intrinsic activity of polyacetylene in ginseng.

Variation in Phenotypic Characteristics and Contents of Sesquiterpene Lactones in Lettuce (Lactuca sativa L.) Germplasm

  • Sung, Jung-Sook;Hur, On-Sook;Ryu, Kyoung-Yul;Baek, Hyung-Jin;Choi, Susanna;Kim, Sang-Gyu;Luitel, Binod Prasad;Ko, Ho-Cheol;Gwak, Jae-Gyun;Rhee, Ju-Hee
    • Korean Journal of Plant Resources
    • /
    • v.29 no.6
    • /
    • pp.679-689
    • /
    • 2016
  • Lettuce is an important annual leafy vegetable and bitterness is its potent flavor character. Lettuce germplasm differ their phenotypic characters and sesquiterpene lactones (SLs) contents which are important for consumer's acceptance. This study was carried out to evaluate the phenotypic characters and SLs contents in one hundred lettuce germplasm in Jeonju, Korea. Twenty-three agro-morphological (16 qualitative and 7 quantitative) traits and two SLs (lactucin and lactucopicrin) contents were studied in these germplasm. Germplasm exhibited the variation in qualitative and quantitative characters. Average plant weight was 423.9 g with a range from 116.0 to 905.0 g. Lactucin content was varied from 19.7 (IT 294226) to $194.4{\mu}g/g$ (IT 294298) with an average concentration of $84.7{\mu}g/g$. Lactucopicrin ranged from 82.5 (IT 300134) to $2228.6{\mu}g/g$ (IT 294210) with an average concentration of $586.3{\mu}g/g$. Total SLs content was ranged from 120.1 (IT 300134) to 2286.6 (IT 294210)${\mu}g/g$ with the average concentration of $671.0{\mu}g/g$. Significant ($p{\leq}0.05$) differences were found between crisp head and butter head germplasm for lactucin, lactucopicrin and total SLs content. Crisp head germplasm revealed the highest average lactucin ($112.9{\mu}g/g$), lactucopicrin ($734.8{\mu}g/g$) and total SLs content ($847.7{\mu}g/g$). Crisp head and leafy type germplasm exhibited more total SLs content (847.7 and $744.7{\mu}g/g$, respectively) than cos ($524.9{\mu}g/g$) and butter head type ($519.4{\mu}g/g$). Principal component analyses of the quantitative traits indicated that the first principal component axis accounted more than 91% of the total variation. This study revealed the ample genetic variation in the agro-morphological traits and SLs contents to support the selection for improved lettuce varieties.

A Study of the Physical and Sensory Characteristics of Ginseng Soybean Curd Prepared with Various Coagulants (인삼첨가 두부의 물리적 관능적 특성에 미치는 인삼 첨가량, 첨가방법 및 응고제의 영향 연구)

  • Kim, Kyung-Tack;Im, Ji-Soon;Kim, Sung-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.965-969
    • /
    • 1996
  • An investigation was carried out to elucidate the effects of type of ginseng, concentration of ginseng, and type of coagulants on the physical and sensory properties of soybean curd. The textural properties of soybean curd were not influenced by the type of ginseng. Soybean curd coagulated with glucono-delta-lactone (GDL) showed a greater hardness than that coagulated with other coagulants, whereas the former produced a lesser springiness than the latter. The L-value was proportionally reduced by the increase of ginseng level and soybean curd coagulated with $CaCl_2$ showed the lowest L value. All the curd products prepared with ginseng had a pale yellow color. In the sensory properties, springiness and beany taste of soybean curd linearly decreased as the concentration of ginseng was increased. The concentration of ginseng to improve the acceptability of ginseng soybean curd as determined by the physical and sensory evaluation, was less than 0.25%. The most acceptable ginseng soybean curd was the one coagulated with $MgCl_2$. Soybean curd prepared with GDL had the lowest acceptability because of its sour taste and textural properties.

  • PDF

Effect of Salts and Temperature upon the Rate and Extent of Aggregation of Casein during Acidification of Milk (산에 의한 우유단백질의 응고속도에 염과 온도가 미치는 영향)

  • Kim, Byung-Yong;Kim, Myung-Hwan;Kinsella, John E.
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.42-48
    • /
    • 1992
  • The rate and extent of coagulation of milk using fast acidification with 0.1 N HCl were monitored by changes in viscosity and turbidity at various temperatures and pH. Also the gelation rate of milk using slow acidification with D-glucono-${\delta}$-lactone was measured in a small strain rheological scanner. Coagulation of milk casein occurred in a specific pH range and was accompanied by an abrupt increase in viscosity at pH 5.0. Acid coagulation rate was enhanced by increasing temperature from $20^{\circ}C{\sim}50^{\circ}C$, and the maximum rate was shown around pH 5.0. The addition of salt ($CaCl_{2}$) reduced the maximum coagulation rate at all temperature ranges and shifted the pH ranges for maximum coagulation rate and the onset pH of coagulation. The onset of gelation and the rate of network formation during slow acidification were facilitated by Cl ion, but suppressed by SCN-ion, as indicated by the rate of rigidity development. The susceptibility to syneresis was greater in the gel made at lower temperature and around pH 4.6, while preheated milk at $90^{\circ}C$ for 5 min prior to acidification showed the same syneresis profile at all heating temperatures ($60{\sim}90^{\circ}C$).

  • PDF

Fragrance, Chemical Composition and Toxicity of the Essential Oil in Erect Bur-marigold (Bidens tripartita L.) (가막사리 (Bidens tripartita L.) 정유의 향취, 화학성분 및 세포독성)

  • Yun, Mi-Sun;Yeon, Bo-Ram;Cho, Hae-Me;Lee, Sa-Eun;Jhoo, Jin-Woo;Jung, Ji-Wook;Park, Yu-Hwa;Kim, Song-Mun
    • Korean Journal of Weed Science
    • /
    • v.32 no.3
    • /
    • pp.195-203
    • /
    • 2012
  • The essential oil was extracted by steam distillation from the aerial part of erect bur-marigold (Bidens tripartita L.), one of the noxious weed in paddy field. The composition of the essential oil was analyzed by gas chromatography-mass spectrometry. The fragrance of the essential oil was green, herbal, oily, spicy. There were 42 constituents in the essential oil:17 hydrocarbons, 6 alcohols, 6 acetates, 5 N-containing compounds, 3 ethers, 3 ketones, 1 lactone and 1 S-containing compound. Major constituents were ${\alpha}$-phellandrene (22.50%), ${\alpha}$-pinene (22.21%), 2,4-dimethyl (2,5-dimethylphenyl) methyl ester benzoic acid (15.11%), limonene (10.66%), ${\beta}$-pinene (35.43%), and ${\beta}$-cubebene (5.27%). The $IC_{50}$ value in MTT assay using HaCaT keratinocyte cell line was 0.018%. However, attachment of patch with 0.1% of the erect bur-marigold essential oil for 24 hr did not show any skin toxicity. Overall results of this study suggest that the essential oil of erect bur-marigold could be used as a source for the development of perfumery industrial products.

Quorum Quenching Enzymes and Biofouling Control (정족수 제어효소와 biofouling 제어)

  • Jeon, Young Jae;Jeong, Won-Geom;Heo, Hye-Sook
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1487-1497
    • /
    • 2016
  • Bacterial cell to cell communication strategies called quorum sensing (QS) using small diffusible signaling molecules (auto-inducers) govern the expression of various genes dependent on their population density manner. As a consequence of synthesis and response to the signaling molecules, individual planktonic cells synchronized group behaviors to control a diverse array of phenotypes such as maturation of biofilm, production of extra-polymeric substances (EPS), virulence, bioluminescence and antibiotic production. Many studies indicated that biofilm formations are associated with QS signaling molecules such as acyl-homoserine lactones (AHLs) mainly used by several Gram negative bacteria. The biofilm maturation causes undesirable biomass accumulation in various surface environments anywhere water is present called biofouling, which results in serious eco-technological problems. Numerous molecules that interfere the bacterial QS called quorum quenching (QQ), have been discovered from various microorganisms, and their functions and mechanisms associated with QS have also been elucidated. To resolve biofouling problems related to various industries, the novel approach based on QS interference has been emerged attenuating multi-drug resisting bacteria appearance and environmental toxicities, which may provide potential advantages over the conventional anti-biofouling approaches. Therefore this paper presents recent information related to bacterial quorum sensing system, quorum quenching enzymes that can control the QS signaling, and lastly discuss the anti-biofouling approaches using the quorum quenching.

Bioequivalence of Lovaload Tablet to Mevacor Tablet (Lovastatin 20 mg) (메바코 정 (로바스타틴 20 mg)에 대한 로바로드 정의 생물학적 동등성)

  • Song, Woo-Heon;Kim, Jung-Min;Cho, Seong-Wan;Kim, Jae-Hyun;Lim, Jong-Lae;Shin, Hee-Jong;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.4
    • /
    • pp.283-288
    • /
    • 1998
  • Lovastatin, one of the potent cholesterol-lowering agents, is an inactive lactone prodrug which is metabolized to its active open acid, lovastatin acid (LVA). Bioequivalence study of two lovastatin preparations, the test drug ($Mevacor^{\circledR}$: Chungwae Pharmaceutical Co., Ltd.) and the reference drug ($Lovaload^{\circledR}$: Chong Kun Dang Pharmaceutical Co., Ltd.), was conducted according to the guidelines of Korea Food and Drug Administration (KFDA). Fourteen healthy male volunteers, $23.9{\pm}3.9$ years old and $67.6{\pm}8.0$ kg of body weight in average, were divided randomly into two groups and administered the drug orally at the dose of 160 mg as lovastatin in a $2{\times}2$ crossover study. Plasma concentrations of lovastatin acid were analysed by HPLC method for 12 hr after administration. The extent of bioavailability was obtained from the plasma concentration-time profiles of total lovastatin acid after alkaline hydrolysis of the plasma samples. By alkaline hydrolysis, trace amounts of unmetabolized lovastatin were converted to lovastatin acid. The $AUC_{0-12hr}$ was calculated by the linear trapezoidal rule method. The $C_{max}$ and $T_{max}$ were compiled directly from the plasma drug concentration-time data. Student's t-test indicated no significant differences between the formulations in these parameters. Analysis of variance (ANOVA) revealed that there were no differences in AUC, $C_{max}$, and $T_{max}$ between the formulations. The apparent differences between the formulations were far less than 20% (e.g., 7.07, 5.77 and 1.18% for AUC, $C_{max}$, and $T_{max}$, respectively). Minimum detectable differences(%) between the formulations at ${\alpha}=0.05$ and $1-{\beta}=0.8$ were less than 20% (e.g., 17.2, 15.1, and 15.9% for AUC, Cmax, and Tmax, respectively). The 90% confidence intervals for these parameters were also within ${\pm}20%$ (e.g.. $-5.20{\sim}19.3$, $-5.00{\sim}16.5$, and $-10.2{\sim}12.5%$ for AUC, $C_{max}$, and $T_{max}$, respectively). These results satisfied the bioequivalence criteria of KFDA guidelines, indicating that the two formulations of lovastatin were bioequivalent.

  • PDF

In vivo Metabolism of Endosulfan in Carp (Cyprinus carpio) (In vivo 시험에 의한 잉어체내 $^{14}C-endosulfan$의 대사)

  • Lee, K.B.;Shim, J.H.;Suh, Y.T.
    • Applied Biological Chemistry
    • /
    • v.37 no.3
    • /
    • pp.203-209
    • /
    • 1994
  • When $^{14}C-{\alpha}-endosulfan$ was incubated with carp liver, kidney and gut preparations, it was metabolized to water soluble and organosoluble metabolites. In an in vitro test, endosulfan was converted to endosulfan ${\alpha}-hydroxyether$ (EHE), endosulfan alcohol (EA) and endosulfan ether (EE). The addition of NADPH resulted in rapid conversion of endosulfan to the metabolites in 105,000 g soluble fraction and microsomes. However, the rate of metabolism of endosulfan in liver, kidney and gut supplemented with NADPH as a cofactor was higher in the 105,000 g soluble fraction than that in the microsomes of carp under incubation conditions. The enzymes probably involved in the metabolism of endosulfan include the glutathione S-transferase (GST) and the mixed function oxidases (MFO), based on the evidence that addition of either GSH or NADPH increased the degradation of endosulfan.

  • PDF