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Bacterial cell to cell communication strategies called quorum sensing (QS) using small diffusible sig-
naling molecules (auto-inducers) govern the expression of various genes dependent on their pop-
ulation density manner. As a consequence of synthesis and response to the signaling molecules, in-
dividual planktonic cells synchronized group behaviors to control a diverse array of phenotypes such 
as maturation of biofilm, production of extra-polymeric substances (EPS), virulence, bioluminescence 
and antibiotic production. Many studies indicated that biofilm formations are associated with QS sig-
naling molecules such as acyl-homoserine lactones (AHLs) mainly used by several Gram negative 
bacteria. The biofilm maturation causes undesirable biomass accumulation in various surface environ-
ments anywhere water is present called biofouling, which results in serious eco-technological problems. 
Numerous molecules that interfere the bacterial QS called quorum quenching (QQ), have been dis-
covered from various microorganisms, and their functions and mechanisms associated with QS have 
also been elucidated. To resolve biofouling problems related to various industries, the novel approach 
based on QS interference has been emerged attenuating multi-drug resisting bacteria appearance and 
environmental toxicities, which may provide potential advantages over the conventional anti-biofoul-
ing approaches. Therefore this paper presents recent information related to bacterial quorum sensing 
system, quorum quenching enzymes that can control the QS signaling, and lastly discuss the anti-bio-
fouling approaches using the quorum quenching.
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Introduction

Biofouling is a phenomenon caused by undesirable accu-

mulation of biomass composed of microorganisms, plants, 

algae, or invertebrate animals in a surface contacting with 

water. This can occur almost anywhere water is present such 

as aquatic transportation vessels, aquaculture, petroleum in-

dustries, medical devices, bioreactors or water distribution 

network and wastewater plant see recent reviews [24, 28, 

83]. Bacteria are the most common biofouling agents and 

the feature of biofouling is related to the bacterial commun-

ity composed of one or more species able to generate 

biofilms. The major cost of biofouling is associated with the 

increased of operating cost or fuel consumption [75]. The 

traditional anti-biofouling strategies rely on physical clean-

ing, or the use of antibacterial compounds (cooper salts), de-

tergent and oxidizing agents such as hydrogen peroxide, 

chlorinated compounds [10].  The traditional antifouling ap-

proaches to the confined environments have resulted in seri-

ous health and environmental problems due to their eco-tox-

icities to many aquatic organisms [10]. 

Many bacterial species are commonly known to control 

their expression of gene circuits in a population dependent 

manner through the release of extracellular signaling mole-

cules to monitor their population density in various environ-

ments called quorum sensing.  The small diffusible mole-

cules called autoinducers (AIs), also known as a quorum 

sensing molecules, reaches the threshold level in proportion 

to the cell density, and then the signal molecules bind to 

a specific receptor protein and activates the expression of 

specific genes. Synthesizing, secreting, and responding to 

these small diffusible molecules as a part of regulating the 

synchronizing behaviors trigger a diverse array of pheno-

types such as bioluminescence [21], antibiotic production 

[66], virulence [1], sporulation [30], and biofilm formation 

[14]. There are many types of QS molecules have been dis-

covered such as acylhomoserine lactones (AHLs), auto-in-

ducer peptides (AIPs), hydroxyl-palmitic acid methylester 
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Fig. 1. Schematic diagram of the AHL/LuxR/LuxI type quorum 

sensing system in Gram-negative bacteria. The luxR is 

a gene encoding LuxR type transcriptional factors and 

luxI is a gene coding for LuxI type AHL synthases. The 

expression of target genes for such as bioluminescence 

and biofilm formation are transcriptionally regulated by 

LuxR homologue proteins when the high concentration 

AHL depending on a threshold level of bacterial cell 

density is present    

(PAME), furnocylborate (AI-2) and ethyl dodecenoic acid 

(DSF) [27, 67, 80, 93, 94]. Among them, Gram positive bac-

teria mainly use the peptide-based signaling, whereas Gram 

negative bacteria use the AHLs based signaling.  

The process interfering QS communication systems has 

been generally referred as quorum quenching (QQ) [19]. QQ 

mechanisms so far described in nature use two strategies. 

One is the enzymes that inactivate QS signals are called QQ 

enzymes and the other is the chemicals disturbing the path-

way of QS system called QS inhibitors (QSI). The production 

of QQ enzyme and QSI have been reported from various 

organisms including algae and invertebrates, terrestrial 

plants, bacteria, and mammalian cells [27, 73]

This review focuses on the novel strategies to overcome 

the conventional anti-fouling approaches relying on AHLs 

mediated QS sensing interference of QQ enzymes so far dis-

covered and the application for the quorum quenching en-

zymes in anti-fouling strategy.

AHLs molecules mediated quorum sensing  

Among the QS molecules, AHLs are the most well charac-

terized, and share common chemical structure features with 

an acyl chain and homoserine lactone ring. Gram negative 

bacteria have a conserved QS system, with two central com-

ponents, where a LuxR-type (R) regulator and LuxI-type (I) 

protein serve as the signal receptor and an AHL synthase, 

respectively (Fig. 1). These signal molecules are synthesized 

by LuxI synthase from S-adenosyl-methionine and an acyl 

chain carried by an acyl carrier protein. Once the AHL mole-

cules recognized by Lux R-type regulators, and then the reg-

ulators control the gene expression associated with various 

phenotypes. Structural variants of the basic AHL molecules 

have been discovered and they vary in length and degree 

of saturation of the acyl side chain as well as in the func-

tional group located at C3 [87]. These QS signals have been 

identified and characterized in over 100 species of Gram- 

negative bacteria belonging to Proteobacteria, other bacteria 

and archaea such as the haloalkaliphilic archaeon Natrono-

coccus occultus [61] and the acidophilic gamma-proteobacte-

rium Acidithiobacillus ferrooxidans [70], the cyanobacterium 

Gloeothece [78] and different marine Bacteriodietes [71]. In par-

ticular, the bacteria that use AHL mediated QS for biofilm 

formations and other phenotypes are summarized in Table 

1. 

Quorum quenching enzymes

Since the quorum quenching strategy prevents the ex-

pression of the biofilm formation  related genes have been 

discovered, various biological origins of quorum quenching 

enzymes or QS inhibitors have been identified from quorum 

sensing and non-quorum sensing microbes [27]. 

Based on the chemical structure of AHLs, three different 

ways of degradation have been discovered as shown in Fig. 

2; the lactonases that open the homoserin lactone ring, the 

acylases (also referred as deaminase) that cleave AHLs at 

the amide bond and release fatty acid and homoserine 

lactone. In addition, signal confusing QQ enzymes: the re-

ductases that convert 3-oxo-substitured AHL to their 3-hy-

droxyl-substitured AHL, and cytochrome oxidase that cata-

lyze oxidation at the acyl chain have also discovered [20].  

AHL lactonase

Lactonase activities against AHL signal have been dis-

covered from diverse microorganisms as summarized in 

Table 2. Based on amino acid sequence and structure of AHL 

lactonases, the QQ enzymes belong to amidohydrolase su-

perfamily and further subclassified into four different lacto-

nase families such as metallolactamase-like lactonase (MBL), 

phosphotriesterases-like lactonase (PLL), paraoxonase, and 

α/β-hydrolase fold lactonase (HFL) [49, 53]. 
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Table 1. Summary of various Gram negative bacteria using AHLs based QS and their molecules that mediate biofilm formation 

Synonyms Producing organisms Phenotypes controlled Reference

C4-HSL Aeromonas hydrophila,
Aeromonas salmonicida,
Pseudomonas aeruginosa,
Serratia liquefaciens MG1

Biofilm formation, proteases, virulence factor, 
and swimming motility

[26, 40, 84]

C6-HSL Chromobacterium violaceum,
Edwardsiella tarda,
Burkholderia cepacia,
Serratia marcescens SS-1,
S. liquefaciens MG1, and
Pseudomonas chlororaphis

Biofilm formation, exoenzyme, pigment, 
virulence factor, pigment prodigiosin, 
swimming motility, 
and antibiotic synthesis

[40, 45, 52, 
57, 66, 69]

C8-HSL Burkholderia cepacia,
Rhodospirillum rubrum

Biofilm formation, siderophore production, 
virulence factor, photosynthetic membrane 
production

[4, 45, 69]

3-oxo-C10-

HSL
Pseudomonas aeruginosa,
Pseudomonas putida

biofilm formation, and virulence factor, [26, 82]

3-oxo-C12-
HSL

Pseudomonas aeruginosa,
P. putida, and Rhodospirillum rubrum

Biofilm formation, virulence factor, and 
photosynthetic membrane production

[4, 35, 82]
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Fig. 2. AHL-degradtion or modification mechanism of quorum quenching enzymes.
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Table 2. Summary of AHL lactonase enzymes produced by various organisms

Species/Source
QQ 

enzyme

Protein 

family
Substrates

Metal

Ion
Reference

Bacillus thuringiensis subsp. 

kurstaki

AiiA MBL 3-oxo-C6-HSL Zn2+ [18]

Geobacillus kaustophilus 

HTA426

GkaP PLL C4-, C6-, C8-, C10-HSL; 3-oxo-C6-, 3-oxo- C8,  

3-oxo-C12-HSL

Zn2+ [95]

Agrobacterium tumefaciens c58 AttM MBL 3-oxo-C8-HSL Zn2+ [5]

Agrobacterium tumefaciens c58 AiiB MBL C6-, C7-, C8-HS; 3-oxo-C6-, 3-oxo-C8-HSL Zn2+ [49]

Arthrobacter sp. IBN110 AhlD MBL C4-, C6-, C8-, C10-HSL; 3-oxo-C6-,  -oxo-C10-HSL Zn2+ [63]

Rhodococcus erythropolis W2 QsdA PLL C6-, C8-, C10-, C12-, C14-HSL; 3-oxo-C6-, 

3-oxo-C8-, 3-oxo-C10-, 3-oxo-C12, 

3-oxo-C14-HSL

Zn2+ [86]

Flaviramulus ichthyoenteri 

Th78T

FiaL MBL C6-HSL; 3-oxo-C6-, 3-oxo-C10-HSL Zn2+ [96]

Sulfolobus islandicus SisLac PLL C4-, C8-, C12-HSL; 3-oxo-C8-, 3-oxo-C10-, 

3-oxo-C12 

Co2+, Fe3+ [22, 29]

Sulfolobus solfataricus P2 SsoPox PLL C8-HSL; 3-oxo-C8-, 3-oxo-C10-, 3-oxo-C12-HSL Co2+, Fe3+ [15]

Soil metagenomics clone QlcA MBL C6-, C7-, C8-HSL; 3-hydroxy-C6-, 

3-hydroxy-C8-HSL; 3-oxo-C8-HSL  

Zn2+ [68]

Ochrobactrum sp. T63 AidH HFL C4-, C6-, C10-HSL; 3-oxo-C6-, 3-oxo-C8-HSL Mn2+ [53]

Human PONs Paraoxonase C6-HSL; 3-oxo-C12 HSL Ca2+ [9]

The QQ enzymes, AiiA isolated from Bacillus thuringinesis 

BTK [37]  and AiiB from Agrobacterium tumefaciens [49] be-

long to the metallolactamase-like lactonase family with the 

characteristics requiring the Zn2+ binding conserve motif 

“HXHXDH~H” at the active center of the enzyme which 

is involved in the cleavage of the ester bond on the lactone 

ring and the proper folding of the AHL lactonase [37]. 

Several other lactonase not relying on zinc or other ions for 

activity have also been reported such as AttM from 

Agrobacterium tumefaciens [5], AhlD from Arthrobacter [63]  

and QlcA from metagenomes [68], although their motifs are 

similar to the Zn2+ binding motif (HXHXDH) of several met-

allohydrolases [19]. 

Phophotriesterase-like lactonase (PLL) containing a tri-

osephosphate isomerase (TIM) like fold consisting of eight 

α-helices and eight parallel β-strands have been discovered 

from many eubacteria and several archaea [48, 95]. The lacto-

nase belonging to this family, in particular, appeared to have 

important biotechnology aspects [3, 58]. Several enzymes 

from this family have interestingly shown thermostable lac-

tonase activities such as GkaP from Geobacillus kaustophilus 

HTA426 [95], SisLac from Sulfolobus islandicus [29] and 

SsoPox from S. solfataricus [15, 58]. Although quorum 

quenching lactonases have great potential to prevent the 

pathogenicity from various pathogenic bacteria, broad AHLs 

substrate ranges and thermostabilities of the enzyme are im-

portant characteristics in anti-fouling section. Chow et al. [7] 

reported directed evolution strategy to isolate thermostable 

quorum quenching lactonase from Geobacillus kaustophilus 

HTA426. In addition Seo et al. [77] reported a thermostable 

quorum quenching lactonase from Geobacillus caldoxylosilyti-

cus YS-8 with broad substrates specificity.

Despite different amino acid sequence and architecture, 

the lactonases are all belonging to amidohydrolase su-

per-families with a similar catalytic mechanism using metal 

ions and key active site [23]. Besides the zinc binding motifs, 

possible other catalytic motifs for metal binding to lactonase 

have been elucidated indicating that the diversity and poly-

morphism of lactonase are exist [56]. Their characteristics as-

sociated with substrate usage and metal ion requirements 

are summarized in Table 2.

Acylase 

AHL acylases degrade the amide bond in AHL molecules 

yielding homoserine lactones and their corresponding acyl 

chain of fatty acids which severe as the carbon energy and 

nitrogen source respectively for bacterial growth as shown 

in Fig. 2.  Since the first AHL acylase AiiD has been reported 
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Table 3. Summary of AHL acylase enzymes produced by various organisms

Species/Source QQ enzyme Protein family Substrates Reference

Variovorax paradoxus VAI-C ND ND C4-, C6-, C8-, C10-, C12-, C14-HSL; 3-oxo-C6-HSL [43]

Ralstonia sp. XJ12B AiiD Ntn-hydrolase 3-oxo-C6-, 3-oxo- C8, 3-oxo-C12-HSL [47]

Pseudomonas aeruginosa PAO1 PvdQ Ntn-hydrolase C7-, C8-, C10-, C11-, C12-, C14-HSL; 3-oxo-C10-, 

3-oxo-C12HSL

[81]

Pseudomonas aeruginosa PAO1 QuiP Ntn-hydrolase C6-HSL, C8-HSL, C10-HSL, and C12-HSL [32]

Streptomyces sp. M664 AhlM Ntn-hydrolase C8-, C10-HSL; 3-oxo-C12HSL [65]

Anabaena sp. PCC7120 AiiC Ntn-hydrolase C4-, C6-, C8-, C10-, C12-, C14-HSL; 3-oxo-C4, 3-oxo-C6-, 

3-oxo-C8-, 3-oxo-C10-, 3-oxo-C12-, 3-oxo- C14-HSL; 

3-hydoxo-C4-, 3-hydoxo-C6-, 3-hydoxo-C8-, 

3-hydoxo-C10-, 3-hydoxo-C12-, 3-hydoxo-C14-HSL 

[72]

Rhodococcus sp. BH4 ND ND C6-, C8-, C10-, C12-HSL; 3-oxo-C6-, 3-oxo- C8, 

3-oxo- C10-, 3-oxo-C12-HSL

[59]

Ochrobactrum sp.A44 AiiO α/β-Hydrolase C10-, C12-HSL; 3-oxo- C10-, 3-oxo-C12-, 

3-oxo-C14-HSL; 3-hydoxo-C12-HSL

[13]

Rattus norvegicus AcyI ND C4-, C8-HSL [89]

Table 4. Summary of AHL acylase enzymes produced from various bacteria that have been used in the inhibition of biofilm formation  

Quenching bacteria Protein AHLs degraded Phenotypes regulated

Bacillus pumilus S8-07 ND 3-Oxo-C12-HSL Inhibit biofilm formation in P. aeruginosa 

PA01

Pseudomonas aeruginosa QuiP C6-, C8-, C10-, C12-HSL Inhibits biofilm formation in Aeromonas sp.

Pseudomonas syringae B728a HacA C8-, C10-, C12-HSL Influence biofilm formation

P. syringae B728a HacB C6-, C8-, C10-, C12-HSL; 3-oxo-C6-, 

3-oxo-C12-HSL 

Influence biofilm formation

Pseudomonas sp. 1A1 Unknown C6-, C8-, C10-, C12-HSL; 3-oxo-C8-, 

3-oxo-C10-, 3-oxo-C12-HSL 

Inhibit biofilm formation in membrane 

bioreactor (MBR)

Rhodococcus sp. BH4 ND C6-, C8-, C10-, C12-HSL; 3-oxo-C6-, 

3-oxo- C8, 3-oxo- C10-, 3-oxo-C12-HSL

Inhibit biofilm formation in MBR

Shewanella sp. MIB015 Aac C8-, C10-, C12-HSL Reduces biofilm formation in Vibrio 

anguillarum

from Variovorax paradoxus VAI-C [43], various bacteria are 

reported to produce this enzyme family. Currently the por-

cine kidney and several bacterial enzymes such as AiiD, 

PvdQ, ahlM, AiiC and QuiP belong to this family known 

N-terminal nucleophile (Ntn) hydrolase family. Table 3 sum-

marizes the QQ acylase enzyme characterized so far with 

their substrate preference. In contrast to the AHL lactonase 

which belongs to various protein families, the majority of 

the characterized AHL acylase belongs to the Ntn hydrolase 

family. Most of AHL acylases in general exhibit a preference 

for long-chain AHLs (with or without a substituent at C-3 

of the acyl chain). In particular, AiiC from Anabaena sp. 

PCC7120 [72]  showed a broad range of AHLs hydrolyses, 

which has high potential for anti-biofouling control agents. 

Compared to AHL lactonases, AHL acylases are considered 

as advantageous for anti-biofouling applications, because in 

contrast to the lactonase product N-acyl homoserine, which 

can re-circularize to the AHL at acidic pH, the acylase re-

action products cannot spontaneously regenerate a func-

tional QS signal. Also several AHL acylase from various bac-

teria have been reported to reduce biofilm formation which 

is summarized in Table 4. 

AHL oxidoreductase

AHL reductase is considered as QS confusing enzymes 

which modify the signal molecules but not destroy as shown 

in Fig. 2. It has been reported that an AHL reductase pro-

duced from Rhodococcus erythropolis W2 converts 3-oxo-sub-



1492 생명과학회지 2016, Vol. 26. No. 12

stituted AHLs to 3-hydroxy derivatives with a high substrate 

preference against long-chain 3-oxo-AHLs (> Carbon num-

ber 8) [64]. This enzyme showed a broad stereospecificity 

capable of reduction on both D- and L- isomers of 3-oxo 

AHL substrates as well as on other AHL analogs such an 

aromatic acyl chain substituent, N-(3-oxo-6-phenyhexanol) 

and 3-oxododecanamine which lacks the homoserin lactone 

ring.  Recently another QQ reductase BpiB09 from a meta-

genomic library has been reported to attenuate Pseudomonas 

aeruginosa biofilm formation [2]. 

The cytochrome P450 oxidase CYP102A1 from Bacillus 

megaterium catalyzing the oxidation of acyl homoserine and 

fatty acids at the ε-1, ε-2, ε-3 positions [8, 62]. The AHL oxi-

dation products still act as QS auto-inducers, but are sig-

nificantly less active than the parent compounds [8]

Application of QQ as anti-biofouling strategy 

Marine biofouling

Marine biofouling is the undesirable biomass accumu-

lation of microorganisms, plants, algae and invertebrate ani-

mals on any structures in contact with seawater, such as 

boats, fish nets, or pipelines. This is causative for friction 

on boats resulting in excessive fuel consumption, increased 

maintenance costs, and generates considerable economic 

losses annually [75, 76]. Since the use of toxic organotin trib-

ultyin based paint products has been banned due to its tox-

icities caused to marine organisms, various novel ap-

proaches searching for non-toxic alternatives have been at-

tempted for either preventing biofouling formation or de-

stroying biofilms using plant extracts [11, 17], bacteriophage 

[54], macroalga extract [25, 50] and new surfaces materials 

using new coating and paint and silver nanoparticles [6, 34, 

46, 51, 55]. A detail summary of the known novel anti-bio-

fouling strategies used is provided by other review [74]. 

Despite of relatively abundant data, anti-QS strategies have 

not been widely investigated in particular in the marine 

industry. 

QS disrupting strategies using QQ enzymes would be of 

promising strategy as QQ enzymes could reduce QS-regu-

lated biofilm formation involved in microfouling, but may 

also prevent the attraction and fixation of macrobiofouling 

species, which have demonstrated the influence of bacterial 

biofilm on the settlement of spores from algae or others [16, 

85]. Several reviews discuss the potential of quorum quench-

ing enzymes such as AHL-acylase, AHL-lactonase, and oxi-

doreductases to control biofilm formation as an anti-biofoul-

ing agents or their incorporation into paints or coatings [12, 

39, 60]. Even though QQ enzymes have been considered as 

efficient anti-fouling agents, no comparable work has been 

reported for marine biofouling. The main limitation would 

be the stability of QQ enzymes within paints as well as pos-

sible limited activities in seawater. QQ enzymes from ex-

tremophile organisms or halophile organisms would be of 

promising source as they usually are highly robust and may 

be active in marine environments. 

Membrane biofouling

Membrane filtration has been wildly used in food in-

dustry, fresh water or wastewater treatment industries as 

an efficient solid/liquid separation technology. However bi-

ofilm formation on membrane altering their functions is one 

of inevitable problems. Quorum quenching (QQ) enzyme as 

an effective antifouling strategy for membrane biofouling 

has recently been adapted in this field in membrane bio-

reactor (MBR) in advance wastewater treatment due to many 

advantages over conventional activated sludge treatments 

[31, 42, 44, 79, 88, 91]. Simpler steps, higher volumetric load-

ing, lower sludge production and better effluent quality pro-

vide substantial benefits from the MBR base process over 

conventional waste water processes [92]. However, the per-

formance of MBR filtration inevitably decreases with oper-

ation time due to the formation of biofilm onto the 

membrane. This phenomena cause by bacterial community 

developed through the quorum sensing. Therefore, this re-

mains one of the most challenging issues for further MBR 

development process. In addition, studies to attenuate mem-

brane biofouling have suggested that biofilm formation is 

mostly associated with Gram-negative bacteria and their se-

creted metabolites [14, 41]

To resolve this technical issue, several studies addressed 

quorum quenching enzyme as an anti-biofouling strategies 

with immobilized QQ enzymes or immobilized QQ bacteria. 

Yeon et al. [90] applied a QQ technique for MBRs. When 

the QQ enzyme (porcine kidney acylase I) was added to an 

MBR, a great reduction in membrane fouling was observed. 

Synergistic or combined effects of physical cleaning modes 

with QQ were also been investigated in MBRs. Further im-

provement in this innovative approach was achieved by im-

mobilizing QQ enzymes on various matrixes such as mag-

netic particles [91] or sodium alginate capsules [33], nano-

filteration membrane [36]. These techniques found to pre-

vent membrane biofouling caused by QS signal molecules 
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due to a reduced secretion of extracellular polymeric sub-

stances (EPS). A significant improvement in membrane per-

meability was observed without any negative impact on ef-

fluent quality. However, the enzyme production cost and 

enzyme stabilities for long-term use constrain this technol-

ogy in this MBR based wastewater plants. 

In this respect, Oh et al. [59] proposed an alternative 

method, where QQ bacteria Rhodococcus sp. BH4 were used 

instead of QQ enzymes. When a microbial vessel containing 

QQ bacteria was placed in an MBR, QS was inhibited while 

mitigating the formation of a biofilm on the membrane 

surface. Further improvement of this approach was made 

by Kim et al. [38] who fabricated free-moving beads for en-

trapping QQ bacteria, and they found that biofouling was 

controlled by both physical and biological actions. The EPS 

production was decreased due to QQ and the bombardment 

of beads onto the membrane surface enabled the biofilm to 

slough off from the membrane surface more easily. 

However, above mentioned studies were investigated under 

synthetic wastewater at lab scales. In this respect, recently 

Lee et al. [44] have reported a similar strategy of entrapped 

QQ bacteria of Rhodococcus sp. BH4 in beads under pilot-scale 

MBRs at a pilot scale wastewater treatment plant with feed-

ing real municipal wastewater. They reported effectiveness 

of this bacterium for membrane fouling control and the 

amount of energy savings due to reduction in the rate of 

transmembrane pressure built-up in QQ-MBR without com-

promising the effluent water quality compared to that in a 

conventional-MBR. Furthermore, the QQ activity and me-

chanical stability of QQ-beads were well maintained indicat-

ing QQ-MBR has good potential for practical applications 

[44]. 

Conclusions

Large amount of literature indicates that QQ enzymes in-

terfering AHLs based QS have been identified not only lim-

ited to Gram negative and positive bacteria, but also found 

in several archaea and eukaryotic animals. This indicates 

their various roles in nature. One of important biological 

functions of QQ enzymes from nature can possibly applied 

to anti-biofouling strategies where biofilm formation medi-

ated by AHL based quorum sensing causes serious economic 

and pathological problems. In particular, to prevent biofilm 

formation observed in various industries, alternative novel 

strategies have been search for. However, still conventional 

anti-biofouling techniques such as copper based agents in-

corporated to paints are still in use.  Although several QSI 

from various organisms showed great potential alternatives, 

the application of QQ enzymes in this field are still limited 

due to their compatibility issues with paints or coatings and 

the activities in sea water. In this respect, the QQ enzymes 

from thermophilic or halophilic archaea would be important 

sources in this field as future studies. Another important ap-

plicable area for QQ enzymes is to prevent biofilm for-

mations cooperated to the membrane as anti-fouling strat-

egies. In this respect the immobilization techniques using 

QQ enzymes or QQ bacteria can be practically applied in 

the advanced wastewater treatment using MBR systems 

even in large scale wastewater treatment plants. Obviously, 

the important applicability of QQ enzyme or bacteria in the 

advanced wastewater treatment using MBR systems needs 

to be further confirmed by life cycle assessment. Despite of 

many types of QQ enzymes existed, only AHL acylases 

mainly used this field which indicates the importance of bio-

technological sources. Moreover, QQ enzymes are highly at-

tractive as these molecules are usually not toxic and may 

be integrated into various matrices without being released. 

The proofs of concept have been widely described and fur-

ther investigations would obviously permit to develop con-

crete applications in order to address the issues of bacterial 

virulence and biofouling. 
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초록：정족수 제어효소와 biofouling 제어

전용재*․정원겸․허혜숙

(부경대학교 미생물학과)

정족수 인식 체계라 불리는 세균들의 세포간 의사교환 전략은 다양한 유전자의 발현조절을 통해, 생물막 성숙, 

세포 외 고분자물질의 생산, 병원성 발현 및 항생제 생산 등과 같은 다양한 표현형을 조절하는 세균의 다세포성 

행동 양식을 제어한다.  다수의 연구에 의하면 많은 종류의 그람 (Gram)음성 세균들이 정족수 인식체계에 필요한 

신호전달 물질로 acyl-homoserine lactones (AHLs)를 사용하고 있으며, 이들은 생물막 형성에 중요한 인자로 작용

함을 시사하였다. 이러한 정족수 인식체계에 의한 생물막의 형성은 물이 존재하는 모든 표면환경에서 불필요한 
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