J. of the Chosun Natural Science Vol. 2, No. 1 (2009) pp. 18-23

Review Article

Polymerization of Hydrosilanes and Vinyl Monomers in the Presence of Transition Metal Complex

Myoung-Hee Kim, Jun Lee, Hyo Chang Cha, Joong-Hyeok Shin and Hee-Gweon Woo[†]

Abstract

This minireview provides the chosen examples of our recent discoveries in the polymerization of hydrosilanes, dihydrosilole, lactones, and vinyl derivatives using various catalysts. Hydrosilanes and lactones copolymerize to give poly(lactone-*co*-silane)s with Cp₂MCl₂/Red-Al (M = Ti, Zr, Hf) catalyst. Hydrosilanes (including dihydrosilole) reduce noble metal complexes (e.g., AgNO₃, Ag₂SO₄, HAuCl₄, H₂PtCl₆) to give nanoparticles along with silicon polymers such as polysilanes, polysilole, polysiloxanes (and silicas) depending on the reaction conditions. Interestingly, phenylsilane dehydrocoupled to polyphenylsilane in the inert nitrogen atmosphere while phenylsilane dehydrocoupled to silica in the ambient air atmosphere. Cp₂M/CX₄ (M = Fe, Co, Ni; X = Cl, Br, I) combination initiate the polymerization of vinyl monomers. In the photopolymerization of vinyl monomers using Cp₂M/CCl₄ (M = Fe, Co, Ni), the photopolymerization of MMA initiated by Cp₂M/CCl₄ (M = Fe, Co, Ni) shows while the polymerization yield decreases in the order Cp₂Fe > Cp₂Ni > Cp₂Co, the molecular weight decreases in the order Cp₂Co > Cp₂Ni > Cp₂Fe. For the photopolymerization and photocopolymerization of MA and AA, the similar trends were observed. The photopolymerizations are not *living*. Many exciting possibilities remain to be examined and some of them are demonstrated in the body of the minireview.

Key words : Poly(caprolactone-*co*-silane)s, Reductive ring-opening, Photopolymerization, Chain initiation, Chain transfer, Poly(hydrosilane), Ferrocene, Cobaltocene, Nickelocene, UV irradiation, Living polymerization, Silver/polymer, Nanocomposites, Dehydrocoupling, Dry Sol-Gel, Organic silica.

1. Introduction

Hydrosilanes undergo versatile reactions in the presence of various catalysts.^[1-3] The reactions include homo/hetero dehydrocoupling, dry sol-gel condensation, etc. Vinyl monomers are easily polymerized by organic radical initiators^[4] and inorganic initiators. In the following sections, this miniaccount provides the selected examples of our recent research developments in the polymerization of hydrosilanes and vinyl monomers in the presence of transition metal complexes. This miniaccount is not meant to be comprehensive, rather, it is focused on the recent research developments discovered in our laboratory.

[†]Corresponding author: hgwoo@chonnam.ac.kr

1.1. Copolymerization of ϵ -caprolactone and hydrosilane to poly(caprolactone-co-silane)s using Cp₂MCl₂ /Red-Al combination catalyst (M = Ti, Zr, Hf)

The non-reductive ring-opening/dehydrocoupling copolymerization of ε -caprolactone with various primary hydrosilanes (RSiH₃: phenylsilane, *p*-tolylsilane, benzylsilane, *p*-methylbenzylsilane, and phenethylsilane) and secondary hydrosilanes (RR'SiH₂: phenylmethylsilane and diphenylsilane) using Cp₂MCl₂/Red-Al (M = Ti, Zr, Hf) combination catalyst produced random copolymers, poly(caprolactone-*co*-silane)s in good yield (eq 1).

For all the primary hydrosilanes the polymerization yield and molecular weight decreased in the order Ti > Zr > Hf whereas the TGA residue yield increased in the order Ti < Zr < Hf. The molecular weights with secondary hydrosilanes were higher than those with primary hydrosilanes while a reverse trend was observed for TGA residue yield. A plausible mechanism for the formation of the random copolymers was provided.^[5]

Alan G. MacDiarmid Energy Research Institute (AMERI), Nanotechnology Research Center (NTRC), and Department of Chemistry, Chonnam National University, Gwangju 500-757, Korea

⁽Received : March 4, 2009, Accepted : March 12, 2009)

1.2. Dry Sol-Gel Condensation of p-X-C₆H₄SiH₃ (X = H, CH₃, CH₃O, F, Cl) to Organosilica p-X-C₆H₄SiO₃ using Nickelocene

The dry sol-gel reaction at toluene in ambient air atmosphere of p-X-C₆H₄SiH₃ (X = H, CH₃, CH₃O, F, Cl) to p-C₆H₄SiO₃ in high yield, catalyzed by nickelocene, is reported (eq 2).

The highest yield, molecular weight, polydispersity index, and TGA residue yield were obtained for *p*-Cl- $C_6H_4SiH_3$. Some degree of unreacted Si-H bonds still remained in the gel because of steric reason. All the insoluble gels adopt an amorphous structure with a smooth surface. A plausible mechanism for the dry solgel reaction was suggested.^[6]

The dry sol-gel copolymerization at toluene in ambient air atmosphere of p-X-C₆H₄SiH₃ (X = H, CH₃, CH₃O, F, Cl) to p-C₆H₄SiO₃ in high yield, catalyzed by nickelocene, is also described.^[7]

1.3. Dehydrocoupling of hydrosilanes to polysilanes by the action of noble metal complexes: Catalytic Si-Si/Si-O Dehydrocoupling of 1,1-Dihydrotertaphenylsilole to Optoelectronic Polysiloles with Colloidal Silver Nanoparticles

The combinative Si-Si/Si-O dehydrocoupling at ambient air atmosphere of 1,1-dihydrotetraphenylsilole 1 with 2 mol% of AgNO₃ and Ag₂SO₄ in toluene at 90°C produces optoelectronic polysiloles **2** in high yield (eq 3).

The complexes such as Cp_2Co , Cp_2Ni , $Cp_2ZrCl_2/$ Red-Al, and AgCl were found to be ineffective for thedehydrocoupling of 1. The polysiloles mainly have Si-Si bonds along with the small portion of Si-O bonds in

J. Chosun Natural Sci., Vol. 2, No. 1, 2009

the polymer backbone chain. Interestingly, the Si-O linkage increased with increasing the concentration of catalyst AgNO₃, implying that while Ag(0) species catalyze the Si-Si dehydrocoupling, Ag(I) species catalyze the Si-O dehydrocoupling along with the simultaneous oxidation of NO₃ ion to NO₂. The silver complexes transformed to colloidal silver nanoparticles during the catalytic reaction. The Si-Si/Si-O dehydrocoupling of 1 with AgNO₃ even at dry nitrogen atmosphere is occurred, supporting that the oxidation of NO_3^- ion to NO₂ is only the possible oxygen source, but not from the adventitious moisture in air. σ -, β -, and γ -Cyclodextrins considerably deteriorated the dehydrocoupling of 1 probably due to both the formation of insoluble inclusion complexes in toluene and the encapsulation of SiH₂ moiety. The resulting silole polymer 2 emits green light at 520 nm and is electroluminescent at 520 nm.^[8a]

Similarly, 1 also dehydrocoupled to 2 by the reduction of noble metal complexes such as Ag_2SO_4 , $HAuCl_4$, H_2PtCl_6 .^[8b] Primary hydrosilanes (i.e., RSiH_3) dehydrocoupled to polysilanes by the reduction of noble metal complexes such as $AgNO_3$, Ag_2SO_4 , $HAuCl_4$, H_2PtCl_6 .^[8c]

1.4. Photopolymerization of vinyl derivatives using Cp_2M/CX_4 (M = Fe, Co, Ni; X = Cl, Br, I)

Organometallic photochemistry has received a great amount of attention because irradiation of organometallics can lead to catalytically and synthetically useful transformations.^[9] In particular, numerous cyclopentadienyl complexes, a historically important class of organometallics, have been prepared and their photochemical properties have been intensively investigated.^[10] A number of halogenated organic compounds have been

$$Cp_2M + CCl_4 \xrightarrow{MMA} poly(MMA)$$

 $M = Fe, Co, Ni$
(4)

used as effective photoinitiators.^[11] A practical problem with halogenated photoinitiators is the corrosion of reactor system caused by acid hydrogen halides which are produced as byproducts during the photopolymerization. The use of ferrocene (Cp₂Fe) as a photopolymerization catalyst (to activate the halogenated photoinitiator) and as a halide-radical trap (to prevent the troublesome acid formation) in combination with halogenated compounds has been reported.^[12] We first used the other group VIII metallocenes such as cobaltocene (Cp₂Co) and nickelocene (Cp₂Ni) for this type of photopolymerization (eq. 4).^[13]

In a typical experiment, a quartz test tube (1 cm×20 cm) charged with MMA (2.14 mL, 20 mmol), CCl₄ (0.19 mL, 2 mmol), Cp₂Fe (0.37 mg, 2 µmol), and benzene (2 mL) was degassed, sealed, and irradicated with 300 nm UV-light (monochromatic UV lamp intensity, 6.93×10^{18} hv mL⁻¹ min⁻¹) for 2 hrs. The polymer was precipitated in hexane, filtered off, and dried under reduced pressure to give 0.44 g (22%) of white solid. Cobaltocene and nickelocene instead of ferrocene were also used with CCl₄ for the photopolymerization. Other halocarbons such as chloroform and Ph(C=O)CH₂Br were also examined as a possible substitute for CCl₄. We used monomer:halide:metallocene with a fixed mole ratio of 10,000:1,000:1. The results are summarized in Table 1.

Fujisaki and coworkers suggested that the photopolymerization of MMA may be initiated by Cp₂Fe/ CCl₄

Initiator	Yield (%) -	mol wt ^b		
		M_w	M_n	PDI ^c
$CCl_4 + Cp_2Fe$	22	110600	55700	2.0
$CCl_4 + Cp_2Co$	3	232000	103300	2.3
$CCl_4 + Cp_2Ni$	11	180600	84900	2.1
$CHCl_3 + Cp_2Fe$	10	-	-	-
Ph(C=O)CH ₂ Br+ Cp ₂ Fe	0	-	-	-
Cp ₂ Fe	trace	-	-	-
CCl_4	trace	-	-	-

Table 1. GPC Characterization of Photopolymerization of MMA^a

^aUV-irradiaion for 2hrs. ^b Measured with GPC in THF. ^c Polydispersity Index, M_w/M_n .

조선자연과학논문집 제2권 제1호, 2009

system as follows (eq. 5):^[12b]

A charge-transfer (CT) complex formed between ferrocene and CCl₄ by the iron atom serving as an electron donor and the chlorine atom as an electron acceptor. The primary process of photochemical initiation of the polymerization could be the absorption of light by this CT complex which will then dissociate into trichloromethyl radical and ferricenium chloride(Cp₂Fe⁺Cl⁻). The trichloromethyl radical will finally initiate the photopolymerization. The CT complex formation seems to be a mandatory condition for the photopolymerization. As shown in Table 1, ferrocene or CCl₄ alone is practically ineffective on the photopolymerization. Ph(C=O) CH₂Br is ineffective because of inability of forming the CT complex with ferrocene. CHCl₃ is less effective than CCl₄. Chlorine atom on the radical site could be more stabilizing the corresponding radical than hydrogen atom.^[14] The C-Cl bond dissociation energy in CCl₄ (84 kcal/mol) is smaller than the C-H bond dissociation energy (96 kcal/mol) in CHCl₃.^[15] Such arguments were supported by the worldwide replacement of chlorofluorocarbons (CFCs) by hydrochlorofluorocarbons (HCFCs) because of ozone depletion in winter.^[16]

The electron configuration is $(e_{2g})^4(a_{1g})^2$ for 18 electron ferrocene, $(e_{2g})^4(a_{1g})^2(e_{1g})^1$ for 19 electron cobaltocene, $(e_{2g})^4(a_{1g})^2(e_{1g})^2$ for 20 electron nickelocene. The highest occupied molecular orbitals e_{2g} and a_{1g} are only slightly bonding and therefore removing electron from them does not greatly destabilize the metallocenes. Th lowest unoccupied molecular orbital e_{1g} is not significantly antibonding so when electrons are added to create 19-electron and 20-electron species the stability loss is minimal although an organometallic complex become most stable when it has 18 electron closed-shell config-

uration. The group VIII metallocenes can be stepwise reduced or oxidized. The photoinitiating ability is linearly related to the magnitude of polymerization yield. We first expected the photoinitiating ability of the group VIII metallocenes should decrease in the order $Cp_2Ni >$ $Cp_2Co > Cp_2Fe$ (an oxidization order), based on the 18 electron rule. However, as seen in Table 2, the photoinitiating effect decreases in the order $Cp_2Fe > Cp_2Ni >$ Cp₂Co. Ferrocene is known to be completely photoinert in nonhalogenated solvents.^[17a] It is known that those metallocenes with an even number of electrons (e.g., 18, 20) are less photoactive, but those with an odd number (e.g., 17, 19) are more photoactive in nonhalogenated solvents.^[17b] Thus, the photoinitiating order apparently coincides with the photostability order in nonhalogenated solvents. We also anticipated that the polymer molecular weights should decrease in the same order as the polymerization yield order because it is known that the weight average molecular weight generally increases with increase of polymerization yield in the radical polymerization of vinyl monomers.^[4] However, the molecular weights decrease in the order $Cp_2Co > Cp_2Ni$ $> Cp_2Fe$, exactly opposite to the polymerization yield order. Ferrocene could accept a chlorine atom radical forming a ferricenium chloride, but, at the same time, the ferricenium chloride might want to go back to stable 18electron ferrocene. Thus, a growing polymer chain radical containing a CCl3 end group could accept a chlorine radical to cap the radical end of polymer chain (eq. 6)

The capping order of metallocenium chloride could be directly related to the photostability order of metallocene itself, $Cp_2Fe > Cp_2Ni > Cp_2Co$. The polymer molecular weight should be, in turn, inversely proportional to the capping order. Matyjaszewski and cow-

$$Cp_{2}Fe + CCl_{4} \longrightarrow Cp_{2}Fe^{-\cdots} Cl^{-}CCl_{3} \xrightarrow{hv} Cp_{2}Fe^{+} + Cl^{-} + CCl_{3}$$

$$MMA + CCl_{3} \longrightarrow poly(MMA) \qquad (5)$$

$$CCl_{3} \xrightarrow{MMA} Cl_{3}Ccccc \xrightarrow{Cp_{2}M-Cl} Cl_{3}Cccccl$$

(6)

J. Chosun Natural Sci., Vol. 2, No. 1, 2009

orker reported the atom-transfer radical polymerization (ATRP) in the presence of 1-phenylethyl chloride/CuCl/ bipyridine.^[18] The ATRP exhibits a *living* character with a negligible amount of irreversible transfer and termination and with a narrow molecular weight distribution, $M_w/M_n < 1.5$. The molecular weight distribution , $M_w/M_n > 1.5$ as shown in Table 1 suggests that our current photopolymerization is not a *living* process. Thus, the current chlorine atom radical transfer from metallocenium chloride to polymer chain radical could be an irreversible termination process.

As described above, the photopolymerization of MMA initiated by Cp_2M/CCl_4 (M = Fe, Co, Ni) shows while the polymerization yield decreases in the order $Cp_2Fe > Cp_2Ni > Cp_2Co$, the molecular weight decreases in the order $Cp_2Co > Cp_2Ni > Cp_2Fe$.^[13] The photopolymerizations of methacrylic acid (MA) and acrylic acid (AA) initiated by Cp_2M/CCl_4 (M = Fe, Co, Ni) show the similar trends (polymerization yield and polymer molecular weight) to the photopolymerization of MMA initiated by Cp_2M/CCl_4 (M = Fe, Co, Ni).^[19] Similarly, the photocopolymerization of MMA and MA initiated by Cp_2M/CCl_4 (M = Fe, Co, Ni) shows that the polymerization yield decreases in the order $Cp_2Fe > Cp_2Ni >$ Cp₂Co whereas the molecular weight decreases in the order $Cp_2Co > Cp_2Ni > Cp_2Fe^{[20]}$ The photopolymerizations of acrylonitrile (AN) initiated by Cp2M/CCl4 (M = Fe, Co, Ni) show the similar trends (polymerization yield and polymer molecular weight) to the photopolymerization of MMA initiated by Cp_2M/CCl_4 (M = Fe, Co, Ni).^[20] The photopolymerizations of styrene (STY) and vinyl acetate (VA) are not occurred in the presence of).^[20] In comparison, the thermal polymerization of MMA initiated by Cp_2M/CCl_4 (M = Fe, Co, Ni) shows that while the polymerization yield decreases in the order $Cp_2Fe > Cp_2Co > Cp_2Ni$, the molecular weight decreases in the order $Cp_2Ni > Cp_2Co > Cp_2Fe$.^[21] The thermal polymerization is not living. The thermal polymerization of styrene initiated by Cp_2M/CCl_4 (M = Fe, Co, Ni) also shows the similar trends to that of MMA.^[20] The thermal copolymerization of MMA and MA initiated by Cp_2M/CCl_4 (M = Fe, Co, Ni) shows the similar trends to that of MMA. For The thermal copolymerization of MMA and MA with the initiation system Cp_2M/CCl_4 (M = V, Cr, Mn), the polymerization yield decreases in the order $Cp_2Mn > Cp_2Cr > Cp_2V$ ^[22] The photopolymerizations of MMA initiated by Cp₂M/ CX_4 (M = Fe, Co, Ni; X = Cl, Br, I) show the similar trends (in terms of polymerization yield and polymer molecular weight) to the photopolymerization of MMA initiated by Cp_2M/CCl_4 (M = Fe, Co, Ni). The initiating efficiency increases in the order: $CI_4 < CBr_4 < CCl_4$ probably due to steric effect of CX_3 moiety in spite of bond strength order C-I < C-Br < C-Cl.^[23]

Conclusions

This minireview describes the polymerization of vinyl monomers, lactones, and hydrosilanes (and dihydrosilole) with various initiators such as Cp₂M/CX₄ (M = Fe, Co, Ni; X = Cl, Br, I), $Cp_2MCl_2/Red-Al$ (M = Ti, Zr, Hf), nickelocene, and noble metal complexes. Hydrosilanes copolymerize with lactones to produce poly(lactone-co-silane)s in the presence of Cp₂MCl₂/ Red-Al (M = Ti, Zr, Hf) catalyst. Hydrosilanes (including dihydrosilole) reduce noble metal complexes (e.g., AgNO₃, Ag₂SO₄, HAuCl₄, H₂PtCl₆) to give metal nanoparticles along with silicon polymers such as polysilanes, polysilole, polysiloxanes (and silicas) depending on the reaction conditions. Interestingly, phenylsilane dehydrocoupled to polyphenylsilane in the inert nitrogen atmosphere while phenylsilane dehydrocoupled to silica in the ambient air atmosphere. In the photopolymerization of vinyl monomers using Cp₂M/ CCl_4 (M = Fe, Co, Ni), the photopolymerization of MMA initiated by Cp_2M/CCl_4 (M = Fe, Co, Ni) shows while the polymerization yield decreases in the order $Cp_2Fe > Cp_2Ni > Cp_2Co$, the molecular weight decreases in the order $Cp_2Co > Cp_2Ni > Cp_2Fe$. For the photohomopolymerization and photocopolymerization of MA and AA, the similar trends were observed. The initiating efficiency increases in the order: $CI_4 < CBr_4$ < CCl₄ probably due to steric effect of CX₃ moiety in spite of bond strength order C-I < C-Br < C-Cl. Furthermore, the photopolymerizations are not living. Hydrosilanes reduce noble metal complexes (e.g., AgNO₃, Ag₂SO₄, HAuCl₄, H₂PtCl₆) to give nanoparticles along with silicon polymers such as polysilanes, and polysiloxanes.

3. Acknowledgments

This work was financially supported by the KICOS (Grant No. K20602000009-08E0200-00910) through a

grant provided by the MOST. We thank our co-workers for their contributions to the evolution of this polymerization chemistry successfully for the last decade.

References

- H.-G. Woo, M.-S. Cho and B.-H. Kim, "Gelest Catalog: A Survey of Properties and Chemistry", Gelest, Morrisville, pp. 50-57, 2008.
- [2] B.-H. Kim and H.-G. Woo, Adv. Organomet. Chem., Vol 52, 143-174, 2005.
- [3] B.-H. Kim and H.-G. Woo, "Specialty Polymers: Materials and Applications", I. K. International Publishing House Private LTD, New Delhi, pp. 207-237, 2007.
- [4] M.-H. Kim, J. Lee, H. C. Cha, H.-S. Ham and H.-G. Woo, J. Chosun Nat. Sci., in press.
- [5] B.-H. Kim, H.-G. Woo, W. Kim and H. Li, J. Chem. Tech. & Biotech., Vol. 81(5), 782-788, 2006.
- [6] M.-S. Cho, B.-H. Kim, Y.-M. Hwang, H.-G. Woo and D.-H. Kim, J. Nanosci. and Nanotech., Vol. 6(11), 3388-3391, 2006.
- [7] B.-H. Kim, M.-S. Cho, S.-Y. Kim, Y.-J. Kim, H.-G. Woo, D.-H. Kim, H. Sohn and H. Li, J. Nanosci. and Nanotech., Vol. 7(11), 3964-3968, 2007.
- [8] (a) B.-H. Kim, M.-S. Cho, S.-Y. Kim, Y.-J. Kim, H.-G. Woo, D.-H. Kim and H. Sohn, J. Nanosci. and Nanotech., Vol. 7(11), 3926-3931, 2007. (b) B.-H. Kim, S.-Y. Kim, M.-H. Kim, H.-G. Woo, D.-H. Kim and H. Sohn, J. Nanosci. and Nanotech., in press. (c) S.-Y. Kim, M.-H. Kim and H.-G. Woo, J. Nanosci. and Nanotech., in press.
- [9] "Photosensitive Metal-Organic Systems: Mechanistic Principles and Applications", (C. Kutal and N. Serpone, Eds.), ACS Advances in Chemistry Series No. 238, American Chemical Society, Washington, DC, 1993.
- [10] C. R. Bock and E. A. Koerner von Gustorf, Adv. Photochem., Vol. 10, 221, 1977.
- [11] J. F. Rabek, "Mechanisms of Photophysical Pro-

cesses and Photochemical Reactions in Polymers: Theory and Applications", Wiley, New York, Chapter 7, 1987.

- [12] (a) M. Imoto, T. Ouchi and T. Tanaka, J. Polym. Sci., Polym. Lett. Ed., Vol. 12, 21, 1974. (b) K. Tsubakiyama and S. Fujisaki, J. Polym. Sci., Polym. Lett. Ed., Vol. 10, 341, 1972. (c) V. D. McGinniss and D. Stevenson, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), Vol. 15(1), 302, 1974.
- [13] H.-G. Woo, J.-Y. Park, L.-Y. Hong, S.-Y. Yang, H. You and H.-S. Ham, Bull. Korean Chem. Soc., Vol. 17, 412, 1996.
- [14] (a) R. W. Baldock, P. Hudson, A. R. Katritzky and F. Soti, J. Chem. Soc., Perkin Trans. 1, 1422, 1974.
 (b) H. G. Viehe, R. Merenyi, L. Stella and Z. Janousek, Angew. Chem. Int. Ed., Vol. 18, 917, 1979.
- [15] (a) J. A. Kerr, Chem. Rev., Vol. 66, 465, 1966. (b)
 S. W. Benson, J. Chem. Edu., Vol. 42, 502, 1965.
- [16] (a) Chem. Eng. News (May 8), 25, 1995. (b) Chem. Eng. News (December 4), 26, 1995.
- [17] (a) A. M. Tarr and D. M. Wiles, Can. J. Chem., Vol. 46, 2725, 1968. (b) P. Borrel, and E. Henderson, Inorg. Chim. Acta, Vol. 12, 215, 1975.
- [18] J.-S. Wang and K. Matyjaszewski, J. Am. Chem. Soc., Vol. 117, 5614, 1995.
- [19] H.-G. Woo, S.-Y. Yang, H. You, Y. K. Choi, S. K. Kook and W. G. Kim, Bull. Korean Chem. Soc., Vol. 17, 582, 1996.
- [20] H.-G. Woo, L.-Y. Hong, S.-Y. Yang, B.-H. Kim, H.-G. Kang, H.-N. Chae, J.-Y. Choi, J.-H. Park and H.-S. Ham, Bull. Korean Chem. Soc., Vol. 19, 580, 1998.
- [21] H.-G. Woo, J.-Y. Park, H.-S. Ham, H.-R. Park, S.-D. Cho, Y.-H. Ko and W.-G. Kim, Bull. Korean Chem. Soc., Vol. 18, 444, 1997.
- [22] H.-G. Woo, B.-H. Kim, M.-S. Cho, M.-S. Kim, Y.-G. Chung, H.-S. Ham, T. S. Hwang, M.-J. Jun and H. Li, Bull. Korean Chem. Soc., Vol. 23, 1343, 2002.
- [23] H.-G. Woo and B.-H. Kim, Unpublished results.