DOI QR코드

DOI QR Code

Potential of fascaplysin and palauolide from Fascaplysinopsis cf reticulata to reduce the risk of bacterial infection in fish farming

  • Received : 2019.07.31
  • Accepted : 2019.11.26
  • Published : 2019.12.31

Abstract

Marine natural products isolated from the sponge Fascaplysinopsis cf reticulata, in French Polynesia, were investigated as an alternative to antibiotics to control pathogens in aquaculture. The overuse of antibiotics in aquaculture is largely considered to be an environmental pollution, because it supports the transfer of antibiotic resistance genes within the aquatic environment. One environmentally friendly alternative to antibiotics is the use of quorum sensing inhibitors (QSIs). Quorum sensing (QS) is a regulatory mechanism in bacteria which control virulence factors through the secretion of autoinducers (AIs), such as acyl-homoserine lactone (AHL) in gram-negative bacteria. Vibrio harveyi QS is controlled through three parallel pathways: HAI-1, AI-2, and CAI-1. Bioassay-guided purification of F. cf reticulata extract was conducted on two bacterial species, i.e., Tenacibaculum maritimum and V. harveyi for antibiotic and QS inhibition bioactivities. Toxicity bioassay of fractions was also evaluated on the freshwater fish Poecilia reticulata and the marine fish Acanthurus triostegus. Cyclohexanic and dichloromethane fractions of F. cf reticulata exhibited QS inhibition on V. harveyi and antibiotic bioactivities on V. harveyi and T. maritimum, respectively. Palauolide (1) and fascaplysin (2) were purified as major molecules from the cyclohexanic and dichloromethane fractions, respectively. Palauolide inhibited QS of V. harveyi through HAI-1 QS pathway at 50 ㎍ ml-1 (26 μM), while fascaplysin affected the bacterial growth of V. harveyi (50 ㎍ ml-1) and T. maritimum (0.25 ㎍). The toxicity of fascaplysin-enriched fraction (FEF) was evaluated and exhibited a toxic effect against fish at 50 ㎍ ml-1. This study demonstrated for the first time the QSI potential of palauolide (1). Future research may assess the toxicity of both the cyclohexanic fraction of the sponge and palauolide (1) on fish, to confirm their potential as alternative to antibiotics in fish farming.

Keywords

References

  1. Aly SM, Albutti A. Antimicrobials use in aquaculture and their public health impact. J Aquac Res Dev. 2014;5(4):1000247. https://doi.org/10.4172/2155-9546.1000247.
  2. Assis CR, Linhares AG, Oliveira VM, Franca RC, Carvalho EV, Bezerra RG, De Carvalho LB Jr. Comparative effect of pesticides on brain acetylcholinesterase in tropical fish. Sci Total Environ. 2012;441:141-50. https://doi.org/10.1016/j.scitotenv.2012.09.058.
  3. Bassler BL, Greenberg EP, Stevens AM. Cross-species induction of luminescence in the quorum- sensing bacterium Vibrio harveyi. J Bacteriol. 1997;179(12):4043-5. https://doi.org/10.1128/jb.179.12.4043-4045.1997
  4. Bauer A, Kirby W, Sherris J, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493-6. https://doi.org/10.1093/ajcp/45.4_ts.493
  5. Bharate SB, Manda S, Joshi P, Singh B, Vishwakarma RA. Total synthesis and anti-cholinesterase activity of marine-derived bis-indole alkaloid fascaplysin. Med Chem Commun. 2012;3(9):1098-103. https://doi.org/10.1039/c2md20076g.
  6. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42-51. https://doi.org/10.1038/nrmicro3380.
  7. Blair WM, Doucette GJ. The Vibrio harveyi bioassay used routinely to detect AI-2 quorum sensing inhibition is confounded by inconsistent normalization across marine matrices. J Microbiol Methods. 2013;92:250-2. https://doi.org/10.1016/j.mimet.2012.12.023
  8. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat. Prod. Rep. 2005;22:15-61. https://doi.org/10.1039/b415080p.
  9. Bocquene G, Galgani F. Les marqueurs biologiques des effets polluants: l'acetylcholinesterase. Ifremer: France; 2004.
  10. Brackman G, Cos P, Maes L, Nelis HJ, Coenye T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother. 2011;55(6):2655-61. https://doi.org/10.1128/AAC.00045-11.
  11. Brackman G, Defoirdt T, Miyamoto C, Bossier P, Van Calenbergh S, Nelis H, Coenye T. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol. 2008;8:149. https://doi.org/10.1186/1471-2180-8-149.
  12. Cells H, Kumar S, Guru SK, Pathania AS, Manda S, Kumar A, Bharate SB, Vishwakarma RA, Malik F. Fascaplysin induces caspase mediated crosstalk between apoptosis and autophagy through the inhibition of PI3K/AKT/mTOR signaling cascade in Human Leukemia HL-60 Cells. 2015;997(January):985-97. (doi:https://doi.org/10.1002/jcb.25053)
  13. Charan RD, McKee TC, Boyd MR. Thorectandrols C, D, and E, new sesterterpenes from the marine sponge Thorectandra sp. J Nat Prod. 2002;65(4):492-5. https://doi.org/10.1021/np010439k.
  14. Chen X, Zhang L, Zhang M, Liu H, Lu P, Lin K. Quorum sensing inhibitors: a patent review (2014-2018). Expert Opin Ther Pat. 2018;28(12):849-65. https://doi.org/10.1080/13543776.2018.1541174.
  15. Debitus C. TUAM 2011. 2011. http://dx.doi.org/https://doi.org/10.17600/11100010.
  16. Dobretsov S, Teplitski M, Bayer M, Gunasekera S, Proksch P, Paul VJ. Inhibition of marine biofouling by bacterial quorum sensing inhibitors. Biofouling. 2011;27(8):893-905. https://doi.org/10.1080/08927014.2011.609616.
  17. Editorials. The antibiotic alarm. Nature. 2013;495:141.
  18. El-Demerdash A, Moriou C, Toullec J, Besson M, Soulet S, Schmitt N, Petek S, Lecchini D, Debitus C, Al-Mourabit A. Bioactive bromotyrosine-derived alkaloids from the Polynesian sponge Suberea ianthelliformis. Mar Drugs. 2018;16(5):146. https://doi.org/10.3390/md16050146.
  19. Feng DQ, Qiu Y, Wang W, Wang X, Ouyang PG, Ke CH. Antifouling activities of hymenialdisine and debromohymenialdisine from the sponge Axinella sp. Int Biodeterior Biodegrad. 2013;85:359-64. https://doi.org/10.1016/j.ibiod.2013.08.014.
  20. Freeman J, Bassler L. A genetic analysis of the function of LuxO, a twocomponent response regulator involved in quorum sensing in Vibrio harveyi. Mol Microbiol. 1999;31(2):665-77. https://doi.org/10.1046/j.1365-2958.1999.01208.x
  21. Gamby S, Roy V, Guo M, Smith JAI, Wang J, Stewart JE, Wang X, Bentley WE, Sintim HO. Altering the communication networks of multispecies microbial systems using a diverse toolbox of AI-2 analogues. ACS Chem. Biol. 2012;7(6):1023-30. https://doi.org/10.1021/cb200524y .
  22. Givskov M, DE Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S. Eukaryotic interference with homoserine lactonemediated prokaryotic signalling. J Bacteriol. 1996;178(22):6618-22. https://doi.org/10.1128/jb.178.22.6618-6622.1996
  23. Hamilton G. Cytotoxic effects of fascaplysin against small cell lung cancer cell lines. Mar Drugs. 2014;12:1377-89. https://doi.org/10.3390/md12031377.
  24. Hatosy S, Martiny A. The ocean as an antibiotic resistance gene reservoir. Appl Environ Microbiol. 2015;81:7593-9. https://doi.org/10.1128/AEM.00736-15.
  25. Henke JM, Bassler BL. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol. 2004a;186(20):6902-14. https://doi.org/10.1128/JB.186.20.6902.
  26. Henke JM, Bassler BL. Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J Bacteriol. 2004b;186(12):3794-805. https://doi.org/10.1128/JB.186.12.3794.
  27. Johnson FH, Shunk IV. An interesting new species of luminous bacteria. J Bacteriol. 1936;31(6):585-93. https://doi.org/10.1128/jb.31.6.585-593.1936
  28. Kalia VC. Quorum sensing inhibitors: an overview. Biotechnol Adv. 2013;31(2):224-45. https://doi.org/10.1016/j.biotechadv.2012.10.004.
  29. Karunasagar I, Pai R, Malathi GR, Karunasagar I. Mass mortality of Penaeus monodon larvae due to antibiotic-resistant Vibrio harveyi infection. 1994;128(3-4):203-9. (doi:https://doi.org/10.1016/0044-8486(94)90309-3)
  30. Kingsland S. The refractory model: the logistic curve and the history of population ecology. Quaterly Rev Biol. 1982;57:29-52. https://doi.org/10.1086/412574
  31. Kumar S, Guru SK, Pathania AS, Manda S, Kumar A, Bharate SB, Vishwakarma RA, Malik F, Bhushan S. Fascaplysin induces caspase mediated crosstalk between apoptosis and autophagy through the inhibition of PI3K/AKT/mTOR signaling cascade in Human Leukemia HL-60 Cells. J Cell Biochem. 2015;116(6):985-97. https://doi.org/10.1002/jcb.25053.
  32. Lecchini D, Dufour V, Carleton J, Strand S, Galzin A. Estimating the patch size of larval fishes during colonization on coral reefs. J Fish Biol. 2004;65:1142-6. https://doi.org/10.1111/j.1095-8649.2004.00493.x.
  33. Lulijwa R, Rupia EJ, Alfaro AC. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Rev Aquac. 2019;In press:1-24. (doi:https://doi.org/10.1111/raq.12344)
  34. Mai T, Tintillier F, Lucasson A, Moriou C, Bonno E, Petek S, Magre K, Al Mourabit A, Saulnier D, Debitus C. Quorum sensing inhibitors from Leucetta chagosensis Dendy, 1863. Lett Appl Microbiol. 2015;61:311-7. https://doi.org/10.1111/lam.12461.
  35. Manda S, Sharma S, Wani A, Joshi P, Kumar V, Guru SK, Bharate SS, Bhushan S, Vishwakarma RA, Kumar A, Bharate SB. Discovery of a marine-derived bisindole alkaloid fascaplysin, as a new class of potent P-glycoprotein inducer and establishment of its structure e activity relationship. Eur J Med Chem. 2016;107:1-11. https://doi.org/10.1016/j.ejmech.2015.10.049.
  36. Manefield M, Harris L, Rice SA, De Nys R, Kjelleberg S. Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists. Appl Environ Microbiol. 2000;66(5):2079-84. https://doi.org/10.1128/AEM.66.5.2079-2084.2000.Updated.
  37. Martinez JL. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut. 2009;157(11):2893-902. https://doi.org/10.1016/j.envpol.2009.05.051.
  38. Modesto KA, Martinez CBR. Roundup causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere. 2010;78(3):294-9. https://doi.org/10.1016/j.chemosphere.2009.10.047.
  39. Moloney MG. Natural products as a source for novel antibiotics. Trends Pharmacol Sci. 2016;37(8):689-701. https://doi.org/10.1016/j.tips.2016.05.001.
  40. Muller WEG, Wang X, Proksch P, Perry CC, Osinga R, Garderes J, Schroder HC. Principles of biofouling protection in marine sponges: a model for the design of novel biomimetic and bio-inspired coatings in the marine environment? Mar Biotechnol (NY). 2013;15(4):375-98. https://doi.org/10.1007/s10126-013-9497-0.
  41. Nackerdien ZE, Keynan A, Bassler BL, Lederberg J, Thaler DS. Quorum sensing influences Vibrio harveyi growth rates in a manner not fully accounted for by the marker effect of bioluminescence. PLoS One. 2008;3(2):e1671. https://doi.org/10.1371/journal.pone.0001671.
  42. Natrah FMI, Kenmegne MM, Wiyoto W, Sorgeloos P, Bossier P, Defoirdt T. Effects of micro-algae commonly used in aquaculture on acyl-homoserine lactone quorum sensing. 2011;317(1-4):53-7. (doi:https://doi.org/10.1016/j.aquaculture.2011.04.038)
  43. Pande GSJ, Scheie AA, Benneche T, Wille M, Sorgeloos P, Bossier P, Defoirdt T. Quorum sensing-disrupting compounds protect larvae of the giant freshwater prawn Macrobrachium rosenbergii from Vibrio harveyi infection. 2013;406-407(July):121-4. (doi:https://doi.org/10.1016/j.aquaculture.2013.05.015)
  44. Perez-Sanchez T, Mora-Sanchez B, Balcazar JL. Biological approaches for disease control in aquaculture: advantages, limitations and challenges. Trends Microbiol. 2018;26(11):896-903. https://doi.org/10.1016/j.tim.2018.05.002.
  45. Peters L, Ko GM, Wright AD, Stackebrandt E, Eberl L, Riedel K. Secondary metabolites of Flustra foliace and their influence on bacteria. Appl Environ Microbiol. 2003;69(6):3469-75. https://doi.org/10.1128/AEM.69.6.3469.
  46. Quevrain E, Domart-Coulon I, Bourguet-Kondracki ML. Chemical defense/chemical communication in sponges and corals. In: Osbourn A, Goss RJ, Carter GT, editors. Natural Products; 2014. p. 39-66. https://doi.org/10.1002/9781118794623.ch3.
  47. Rasch M, Buch C, Austin B, Slierendrecht WJ, Ekmann KS, Larsen JL, Johansen C, Riedel K, Eberl L, Givskov M, Gram L. An inhibitor of bacterial quorum sensing reduces mortalities caused by Vibriosis in rainbow trout (Oncorhynchus mykiss, Walbaum). Syst Appl Microbiol. 2004;27(3):350-9. https://doi.org/10.1078/0723-2020-00268.
  48. Reverter M, Saulnier D, David R, Bardon-Albaret A, Belliard C, Tapissier-Bontemps N, Lecchini D, Sasal P. Fish & Shell fish immunology effects of local Polynesian plants and algae on growth and expression of two immunerelated genes in orbicular bat fish (Platax orbicularis). Fish Shellfish Immunol. 2016;58:82-8. https://doi.org/10.1016/j.fsi.2016.09.011.
  49. Roll DM, Ireland CM, Lu HSM, Clardy J. Fascaplysin, an unusual antimicrobial pigment from the marine sponge Fascaplysinopsis sp. J Org Chem. 1988;53(14):3276-8. https://doi.org/10.1021/jo00249a025.
  50. Saurav K, Costantino V, Venturi V, Steindler L. Quorum sensing inhibitors from the sea discovered using bacterial N -acyl-homoserine. Mar Drugs. 2017;15:53. https://doi.org/10.3390/md15030053.
  51. Schluter J, Schoech AP, Foster KR, Mitri S. The evolution of quorum sensing as a mechanism to infer kinship. PLOS Comput Biol. 2016;12(4):e1004848. https://doi.org/10.1371/journal.pcbi.1004848.
  52. Schneider L. A critical review of cholinesterase inhibitors as a treatment modality in Alzheimer's disease. Dialogues Clin Neurosci. 2000;2(2):111-28. https://doi.org/10.31887/DCNS.2000.2.2/lschneider
  53. Segraves NL, Robinson SJ, Garcia D, Said SA, Fu X, Schmitz FJ, Pietraszkiewicz H, Valeriote FA, Crews P. Comparison of fascaplysin and related alkaloids : a study of structures, cytotoxicities, and sources. J Nat Prod. 2004;67:783-92. https://doi.org/10.1021/np049935+.
  54. Shafiq MI, Steinbrecher T, Schmid R. Fascaplysin as a specific inhibitor for CDK4:insights from molecular modelling. PLoS One. 2012;7(8):e42612. https://doi.org/10.1371/journal.pone.0042612.
  55. Shah SQA, Cabello FC, L'Abee-lund TM, Tomova A, Godfrey HP, Buschmann AH, Sorum H. Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites. Environ Microbiol. 2014;16:1310-20. https://doi.org/10.1111/1462-2920.12421.
  56. Shrestha P, Cooper BS, Coast J, Oppong R, Do Thi Thuy N, Phodha T, Celhay O, Guerin PJ, Wertheim H, Lubell Y. Enumerating the economic cost of antimicrobial resistance per antibiotic consumed to inform the evaluation of interventions affecting their use. Antimicrob Resist Infect Control. 2018;7(98):1-9. https://doi.org/10.1186/s13756-018-0384-3.
  57. Skindersoe ME, Ettinger-Epstein P, Rasmussen TB, Bjarnsholt T, de Nys R, Givskov M. Quorum sensing antagonism from marine organisms. Mar Biotechnol (NY). 2008;10(1):56-63. https://doi.org/10.1007/s10126-007-9036-y.
  58. Spellberg B, Gilbert DN. The future of antibiotics and resistance: a tribute to a career of leadership by John Bartlett. Clin Infect Dis. 2014;59:S71-5. https://doi.org/10.1093/cid/ciu392.
  59. Steenackers HP, Levin J, Janssens JC, De Weerdt A, Balzarini J, Vanderleyden J, De Vos DE, De Keersmaecker SC. Structure-activity relationship of brominated 3-alkyl-5-methylene-2(5H)-furanones and alkylmaleic anhydrides as inhibitors of Salmonella biofilm formation and quorum sensing regulated bioluminescence in Vibrio harveyi. Bioorg Med Chem. 2010;18(14):5224-33. https://doi.org/10.1016/j.bmc.2010.05.055.
  60. Sullivan B, Faulkner DJ. An antibacterial sesterterpene from a palauan sponge. Tetrahedron Lett. 1982;23:907-10. https://doi.org/10.1017/CBO9781107415324.004.
  61. Swem LR, Swem DL, Wingreen NS, Bassler BL. Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi. Cell. 2008;134(3):461-73. https://doi.org/10.1016/j.cell.2008.06.023.
  62. Teasdale ME, Liu J, Wallace J, Akhlaghi F, Rowley DC. Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Appl Environ Microbiol. 2009;75(3):567-72. https://doi.org/10.1128/AEM.00632-08.
  63. Tello E, Castellanos L, Duque C. Synthesis of cembranoid analogues and evaluation of their potential as quorum sensing inhibitors. Bioorg Med Chem. 2013;21(1):242-56. https://doi.org/10.1016/j.bmc.2012.10.022.
  64. Thomas T, Moitinho-silva L, Lurgi M, Bjo JR, Easson C, Astudillo-garci C, Olson JB, Erwin PM, Lopez S, Luter H, Chaves-fonnegra A, Costa R, Schupp PJ, Steindler L, Erpenbeck D. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun. 2016;7:11870. https://doi.org/10.1038/ncomms11870.
  65. Waters CM, Bassler BL. Quorum sensing cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol. 2005;21:319-46. https://doi.org/10.1146/annurev.cellbio.21.012704.131001.
  66. Wester PW, Vos JG. Toxicological pathology in laboratory fish : an evaluation with two species and various environmental contaminants. 1994;3(1):21-44. (doi:https://doi.org/10.1007/BF00121386)
  67. WHO, FAO, OIE. Antimicrobial use in aquaculture and antimicrobial resistance. Geneva: WHO press; 2006.
  68. Yang Q, Han Y, Zhang X-H. Detection of quorum sensing signal molecules in the family Vibrionaceae. J Appl Microbiol. 2011;110(6):1438-48. https://doi.org/10.1111/j.1365-2672.2011.04998.x.