• Title/Summary/Keyword: Lactobacillus plantarum A

Search Result 590, Processing Time 0.028 seconds

Microorganisms Involved in Natural Fermentation of Asparagus cochinchinensis Roots and Changes in Efficacies after Fermentation (천문동 뿌리의 자연발효에 관여하는 미생물 및 발효 후 효능 변화)

  • Kim, Min-Jee;Shin, Na Rae;Lee, Myeong-Jong;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.18 no.2
    • /
    • pp.96-105
    • /
    • 2018
  • Objectives: The aim of this study was to examine the effect of Asparagus cochinchinensis (AC) and fermented AC (fAC) on microorganisms and efficacies. Methods: AC was fermented for four weeks without using any bacterial strains. Then we investigated fermentation characteristics including potential of hydrogen (pH), total sugar, microbial profiling and antioxidant compound contents such as total polyphenol and total flavonoid. The anti-obesity effects of AC and fAC were evaluated by using Oil Red O staining in 3T3-L1 adipocyte. Also anti-diabetic effects of them were evaluated by using 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) uptake in C2C12 skeletal muscle cell. Results: Both pH and total sugar of fAC were decreased significantly compared to unfermented AC. And the abundance of total bacteria and lactic acid bacteria increased during fermentation, especially Lactobacillus plantarum. Also fermentation of AC increased the content of total polyphenol. On the metabolic aspects, we found that AC and fAC suppressed fat accumulation. Conclusions: After four weeks of fermentation, AC increased concentrations of active compounds, altered microbial composition, and inhibited fat accumulation such as triglyceride. These results indicate that fermentation of AC might be a beneficial therapeutic approach for obesity.

Use of Fish Oil Nanoencapsulated with Gum Arabic Carrier in Low Fat Probiotic Fermented Milk

  • Moghadam, Farideh Vahid;Pourahmad, Rezvan;Mortazavi, Ali;Davoodi, Daryoush;Azizinezhad, Reza
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.309-323
    • /
    • 2019
  • Fish oil consists of omega-3 fatty acids which play an important role in human health. Its susceptibility to oxidation causes considerable degradation during the processing and storage of food products. Accordingly, encapsulation of this ingredient through freeze drying was studied with the aim of protecting it against environmental conditions. Gum arabic (GA) was used as the wall material for fish oil nanoencapsulation where tween 80 was applied as the emulsifier. A water-in-oil (W/O) emulsion was prepared by sonication, containing 6% fish oil dispersed in aqueous solutions including 20% and 25% total wall material. The emulsion was sonicated at 24 kHz for 120 s. The emulsion was then freeze-dried and the nanocapsules were incorporated into probiotic fermented milk, with the effects of nanocapsules examined on the milk. The results showed that the nanoparticles encapsulated with 25% gum arabic and 4% emulsifier had the highest encapsulation efficiency (EE) (87.17%) and the lowest surface oil (31.66 mg/100 kg). Using nanoencapsulated fish oil in fermented milk significantly (p<0.05) increased the viability of Lactobacillus plantarum as well as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) contents. The fermented milk sample containing fish oil nanoencapsulated with 25% wall material and 4% emulsifier yielded the greatest probiotic bacterial count (8.41 Log CFU/mL) and the lowest peroxide value (0.57 mEq/kg). Moreover, this sample had the highest EPA and DHA contents. Utilizing this nanoencapsulated fish oil did not adversely affect fermented milk overall acceptance. Therefore, it can be used for fortification of low fat probiotic fermented milk.

Selection of Lactococcus lactis HY7803 for Glutamic Acid Production Based on Comparative Genomic Analysis

  • Lee, Jungmin;Heo, Sojeong;Choi, Jihoon;Kim, Minsoo;Pyo, Eunji;Lee, Myounghee;Shin, Sangick;Lee, Jaehwan;Sim, Jaehun;Jeong, Do-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.298-303
    • /
    • 2021
  • Comparative genomic analysis was performed on eight species of lactic acid bacteria (LAB)-Lactococcus (L.) lactis, Lactobacillus (Lb.) plantarum, Lb. casei, Lb. brevis, Leuconostoc (Leu.) mesenteroides, Lb. fermentum, Lb. buchneri, and Lb. curvatus-to assess their glutamic acid production pathways. Glutamic acid is important for umami taste in foods. The only genes for glutamic acid production identified in the eight LAB were for conversion from glutamine in L. lactis and Leu. mesenteroides, and from glucose via citrate in L. lactis. Thus, L. lactis was considered to be potentially the best of the species for glutamic acid production. By biochemical analyses, L. lactis HY7803 was selected for glutamic acid production from among 17 L. lactis strains. Strain HY7803 produced 83.16 pmol/μl glutamic acid from glucose, and exogenous supplementation of citrate increased this to 108.42 pmol/μl. Including glutamic acid, strain HY7803 produced more of 10 free amino acids than L. lactis reference strains IL1403 and ATCC 7962 in the presence of exogenous citrate. The differences in the amino acid profiles of the strains were illuminated by principal component analysis. Our results indicate that L. lactis HY7803 may be a good starter strain for glutamic acid production.

Effects of sodium diacetate and microbial inoculants on fermentation of forage rye

  • Yan Fen Li;Eun Chan Jeong;Li Li Wang;Hak Jin Kim;Farhad Ahmadi;Jong Geun Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.96-112
    • /
    • 2023
  • Rye (Secale cereale L.) is a valuable annual forage crop in Korea but there is limited information about the impact of chemical and biological additives on fermentation characteristics of the crop. This experiment was conducted to investigate fermentation dynamics of wilted forage rye treated with the following six additives; control (no additive), sodium diacetate applied at 3 g/kg wilted forage weight (SDA3), 6 g/kg wilted forage weight (SDA6), inoculations (106 CFU/g wilted forage) of Lactobacillus plantarum (LP), L. buchneri (LB), or LP+LB. The ensiled rye sampled at 1, 2, 3, 5, 10, 20, 30, and 45 days indicated that the acidification occurred fast within five days of storage than the rest of the storage period. The microbial inoculants decline the pH of ensiled forage, more rapidly than the control or SDA treated, which accompanied by the decrease of water-soluble carbohydrates and increase of lactic acid. Compared with the control silage, all treatments suppressed ammonia-nitrogen formation below to 35 g/kg DM throughout the sampling period. Suppression of total microbial counting occurred in SDA6, LP, and LP + LB. The lactic acid production rates were generally higher in microbial inoculation treatments. Acetic acid concentration was lowest in the LP-treated silage and highest in the SDA- and LB-treated silages. The in vitro dry matter (DM) digestibility and total digestible nutrients were the highest in the silage treated with SDA (6 g/kg) at day 45 of ensiling. Based on lower ammonia-nitrogen concentrations and higher feed value, ensiling forage rye treated with SDA at 6 g/kg is promising through enhanced silage quality.

Development of Cosmetic Ingredient by Fermented Paprika Juice (파프리카 발효즙의 화장품 소재개발 연구)

  • Bae, Soo Jung;Song, Min Hyeon;Oh, Jung Young;Bae, Jun Tae;Kim, Jin Hwa;Lee, Geun Soo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.2
    • /
    • pp.117-124
    • /
    • 2018
  • In this study, cosmetic materials were developed using a new method of making juice through the fermentation of raw natural materials with microorganisms in order to supplement the advantages and disadvantages of an organic solvent extraction method and a microbial fermentation method. The natural products were selected from two colors (red, green) of paprika known to be rich in various colors and vitamins. The microorganisms used for fermentation were fermented by inoculating paprika with lactic acid bacteria (Lactobacillus plantarum) having sugar-hydrolyzed ability. First, we investigated the changes of physiologically active substances of two kinds of paprika juice and two kinds of fermented paprika juice. Total phenols content and total flavonoids content were higher in the fermented paprika juice than in the paprika juice, and especially in the fermented red paprika juice. Free radical scavenging effect and lipid peroxidation inhibitory effect were also showed an excellent antioxidative effect on paprika fermented juice, among which the effect of red paprika fermentation juice was the highest. The expression of MMP-1 in fermented red paprika juice with high antioxidant activity was inhibited by concentration-dependent expression of MMP-1 mRNA and MMP-1 protein. In the glycation experiments with aging, the anti-glycation effect of fermented paprika juice was highly inhibited by the production of advanced glycation end-products (AGEs), which was closely related to the antioxidant effect. In addition, the activity of senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal), an indicator of cell senescence, was measured using human dermal fibroblast (HDF). The results showed that the cell senescence was inhibited when the cells were treated with fermented paprika juice. In conclusion, fermented paprika juice using lactic acid bacteria showed better antioxidative and anti-aging effects than paprika juice. Among them, fermented red paprika juice has the best antioxidant and anti-aging effect and can be applied as natural new material of antioxidant and anti-aging.

Optimal Lactic Acid Fermentation Conditions and Quality Properties for Rubus coreanus Miquel (Bokbunja) and Chlorella Mixtures (복분자와 클로렐라 혼합물의 젖산발효 최적조건 및 품질 특성)

  • Kim, Jae-Young;Lee, Sang-Uk;Kim, Na-Hyung;Moon, Kwang-Hyun;Baek, Seung-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.3
    • /
    • pp.386-395
    • /
    • 2016
  • To develop a functional fermentation food from Rubus coreanus Miquel (Bokbunja) and chlorella mixtures, optimal lactic acid fermentation conditions were established, and quality properties based on physicochemical evaluation such as chemical compositions, free sugars, organic acids, and antibacterial activities were investigated. Regarding optimal fermentation strain selection, formation of lactic acid was best in Lactobacillus plantarum among the experimental strains (10 kinds), and the optimal fermentation temperature was $37^{\circ}C$. In addition, overall acceptability in the sensory evaluation was highest in the 5% chlorella mixture sample. Therefore, quality properties of the prepared sample under the established optimal fermentation conditions were investigated. Moisture, total sugar (dry basis), crude fiber (dry basis), and pH of fermented Rubus coreanus Miquel juice (RCM) with 5% chlorella mixture (RCM-C5) were reduced by 4.90%, 14.15%, and 0.32%, respectively, as compared with non-fermented RCM. Meanwhile, crude protein, crude fat, and crude ash (dry basis) of RCM-C5 were elevated by 13.75%, 0.18%, and 0.73%, respectively, as compared with RCM. The yellowness (b value) of color values was greater in RCM-C5 compared to RCM. The free sugar and organic acid contents of RCM-C5 were elevated by 0.97% and 616.30 mg%, respectively, as compared with RCM. In addition, the gram positive bacterium Staphylococcus aureus was elevated by 5.83% while gram negative bacteria Escherichia coli and Salmonella Typhimurium were elevated by 2.94% and 4.67%, respectively, as compared with RCM. In conclusion, the quality properties of RCM and chlorella lactic acid fermentation mixtures were improved compared with the general RCM product. Consequently, it is possible to apply fermented RCM as a functional fermentation food.

Antioxidant and Antimicrobial Activities of Ethanol Extract from Six Vegetables Containing Different Sulfur Compounds (황 함유 채소 에탄올 추출물의 항산화 및 항균활성)

  • Kim, Kyoung-Hee;Kim, Hye-Joung;Byun, Myung-Woo;Yook, Hong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.5
    • /
    • pp.577-583
    • /
    • 2012
  • This study investigated the antioxidant activities, and antimicrobial activity $in$ $vitro$ of an 80% ethanol extract from garlic, daikon, leek, ginger, onion, and green onion, which are widely-used ingredients in Korean food that contain sulfur. The total polyphenol content in ginger and leek extracts showed a high value ($233.63{\pm}4.59$ and $220.98{\pm}10.56$ mg/g GAE) and onions, leeks, garlic, and daikon followed by with $69.07{\pm}1.42$, $68.83{\pm}2.11$, $19.41{\pm}0.40$, $19.05{\pm}03.32$ mg/g GAE, respectively. DPPH radical scavenging activity was highest with ginger extracts ($1.57{\pm}0.15$ mg/mL as $IC_{50}$) followed in order of decreasing activity by leeks, onions, daikon, green onions, and garlic. The results of ABTS radical scavenging activity and FRAP value showed higher antioxidant activity in extracts from ginger and leek. The order of vegetables with most to least prevalent ABTS radical scavenging activity was green onions, onions, garlic, and finally daikon. From greatest to least FRAP value, the relevant vegetables were green onions, onions, daikon, and garlic (p<0.05). Ginger extracts showed promise against seven strains of microbes: $Bacillus$ $cereus$, $Bacillus$ $subtillis$, $Staphylococcus$ $aureus$, $Lactobacillus$ $plantarum$, $Escherichia$ $coli$, $Salmonella$ $enterica$, and $Pseudomonas$ $aeruginosa$. Garlic extracts (5 mg/disc) showed strong antimicrobial activity against $B.$ $cereus$ (22.3 mm) and $E.$ $coli$ (24.3 mm). Extracts of both onion and green onion showed antimicrobial activity against only $E.$ $coli$ (12.7 and 10.3 mm) and $B.$ $cereus$ (12.0 and 12.5 mm) at 10 mg/disc, and the inhibition zone diameter from extracts of garlic and leeks were 18.0 mm and 10.4 mm vs. $L.$ $plantarum$ at 10 mg/disc. This study showed positive antioxidant activities for ginger and leeks, and positive antimicrobial activities for leeks and garlic. These sulfur-containing vegetables are widely used in Korean food. Leeks especially could serve as a functional food preservative.

Chemical components and hepato-protective effect of Lentinula edodes fermented by lactic acid bacteria (표고 유산균 발효물의 성분 및 간기능 보호 효과)

  • Im, Seung-Bin;Kim, Kyung-Je;Jin, Seong-Woo;Koh, Young-Woo;Ha, Neul-I;Jeong, Hee-Gyeong;Lee, Jae-Keun;Yun, Kyeong-Won;Seo, Kyoung-Sun
    • Journal of Mushroom
    • /
    • v.19 no.3
    • /
    • pp.191-199
    • /
    • 2021
  • This study was conducted to improve the useful components and biological activity of Lentinula edodes fermented by lactic acid bacteria (LAB). Three LAB strains (Lactobacillus brevis KCCM 11904, L. plantarum KCCM 354469, and L. fermentum KCCM 12116) were inoculated and used for L. edodes hot water extract (10%, 20%, 30%) fermentation. LAB fermentation of L. edodes hot water extracts decreased pH and thus were more acidic than non-fermented L. edodes hot water extract. β-glucan and ergothioneine contents were increased by L. edodes in a concentration-dependent manner. The ergothioneine and β-glucan contents were highest in fermented with 30% L. edodes hot water extract fermented by L. plantarum and L. brevis (40.48 mg/100 g and 13.94%, respectively). The hepato-protective effect of fermented L. edodes hot water extracts by the three LAB were tested using Sprague-Dawley rat primary hepatocytes. In primary hepatocytes obtained following liver injury induced by acetaminophen, fermented L. edodes hot water extracts by the three LAB showed protective effects, as evident by reduction of the aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase liver markers. The collective results indicate that the fermented L. edodes hot water extracts obtained using LAB are potentially valuable in preventing or treating liver disease.

Some Prophylactic Options to Mitigate Methane Emi ssion from Animal Agriculture in Japan

  • Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.285-294
    • /
    • 2011
  • The abatement of methane emission from ruminants is an important global issue due to its contribution to greenhouse gas with carbon dioxide. Methane is generated in the rumen by methanogens (archaea) that utilize metabolic hydrogen ($H_2$) to reduce carbon dioxide, and is a significant electron sink in the rumen ecosystem. Therefore, the competition for hydrogen used for methanogenesis with alternative reductions of rumen microbes should be an effective option to reduce rumen methanogenesis. Some methanogens parasitically survive on the surface of ciliate protozoa, so that defaunation or decrease in protozoa number might contribute to abate methanogenesis. The most important issue for mitigation of rumen methanogenesis with manipulators is to secure safety for animals and their products and the environment. In this respect, prophylactic effects of probiotics, prebiotics and miscellaneous compounds to mitigate rumen methanogenesis have been developed instead of antibiotics, ionophores such as monensin, and lasalocid in Japan. Nitrate suppresses rumen methanogenesis by its reducing reaction in the rumen. However, excess intake of nitrate causes intoxication due to nitrite accumulation, which induces methemoglobinemia. The nitrite accumulation is attributed to a relatively higher rate of nitrate reduction to nitrite than nitrite to ammonia via nitroxyl and hydroxylamine. The in vitro and in vivo trials have been conducted to clarify the prophylactic effects of L-cysteine, some strains of lactic acid bacteria and yeast and/or ${\beta}$1-4 galactooligosaccharide on nitrate-nitrite intoxication and methanogenesis. The administration of nitrate with ${\beta}$1-4 galacto-oligosaccharide, Candida kefyr, and Lactococcus lactis subsp. lactis were suggested to possibly control rumen methanogenesis and prevent nitrite formation in the rumen. For prebiotics, nisin which is a bacteriocin produced by Lactococcus lactis subsp. lactis has been demonstrated to abate rumen methanogenesis in the same manner as monensin. A protein resistant anti-microbe (PRA) has been isolated from Lactobacillus plantarum as a manipulator to mitigate rumen methanogenesis. Recently, hydrogen peroxide was identified as a part of the manipulating effect of PRA on rumen methanogenesis. The suppressing effects of secondary metabolites from plants such as saponin and tannin on rumen methanogenesis have been examined. Especially, yucca schidigera extract, sarsaponin (steroidal glycosides), can suppress rumen methanogenesis thereby improving protein utilization efficiency. The cashew nutshell liquid (CNSL), or cashew shell oil, which is a natural resin found in the honeycomb structure of the cashew nutshell has been found to mitigate rumen methanogenesis. In an attempt to seek manipulators in the section on methane belching from ruminants, the arrangement of an inventory of mitigation technologies available for the Clean Development Mechanism (CDM) and Joint Implementation (JI) in the Kyoto mechanism has been advancing to target ruminant livestock in Asian and Pacific regions.

Strain Improvement of Leuconostoc mesenteroides as a Acid-Resistant Mutant and Effect on Kimchi fermentation as a Starter (Leuconostoc mesenteroides의 내산성 변이주의 김치발효에 미치는 효과)

  • Kim Young-Hwan;Kim Hee-Zoong;Kim Ji-Young;Choi Tae-Bu;Kang Sang-Mo
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.1
    • /
    • pp.41-50
    • /
    • 2005
  • An organic acid tolerance mutant (M-200) was obtained from Leuconostoc mesenteroides KCCM 35471, followed by the screening procedure using a specific organic acid medium (lactic acid: acetic acid, 2:1). The characteristics of the acid tolerance M-200 and the wild type LM-W were examined at various temperature and pH ranges $(l0-30^{\circ}C$ of temp, 3.5-4.5 of pH). The growth of strain M-200 at HCl adjusted medium $(10^{\circ}C\;and\;pH 3.5)$ was observed. In the case of organic acid adjusted medium, the strain showed its growth at the pH range of 3.8. When the strain M-200 was used as a starter for Kimchi fermentation, a constant acid level (0.55) was observed during the whole fermentation period. This result indicates that the strain produces a proper level of acid content for the Kimchi fermentation. This result also indicates that the edible period of Kimchi can be extended to 3.5 fold compare to the result obtained from the LM-W used Kimchi fermentation. However the excess use of the strain M-200 showed the inhibition of growth of Lactobacillus plantarum, low lactic acid level content and low level of organoleptic test. In the case of organic acid content during the Kimchi fermentation, the strain M-200 showed relatively low production rate compare to the wild type (M-200: 3.5 mg/L at 21 days of fermentation, LM-W: 7 mg/L at 21 days of fermentation). Therefore a mixed Kimchi starter containing M-200 and other strains probably maintain a good Kimchi quality during the fermentation.