• Title/Summary/Keyword: Lactobacillus pentosus

Search Result 58, Processing Time 0.033 seconds

Characterization of Lactic Bacterial Strains Isolated from Raw Milk

  • Kim, Hyun-jue;Shin, Han-seung;Ha, Woel-kyu;Yang, Hee-jin;Lee, Soo-won
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.1
    • /
    • pp.131-136
    • /
    • 2006
  • During lactic acid bacteria (LAB) transit through the gastrointestinal tract, ingested microorganisms were exposed to successive stress factors, including low pH in the human stomach and in bile acid. These stress factors can be used as criteria for the selection of a viable probiotic strain. Four such strains (Lactobacillus helveticus SGU 0011, Lactobacillus pentosus SGU 0010, Streptococcus thermophilus SGU 0021 and Lactobacillus casei SGU 0020) were isolated from raw milk. When the identified LAB were exposed to synthetic gastric juice, whereas L. casei SGU 0020 and S. thermophilus SGU 0021 exhibited a 0% survival rate, L. helveticus SGU 0011 and L. pentosus SGU 0010 exhibited 60% and 95% survival rates. L. casei SGU 0020 and S. thermophilus SGU 0021 could not be examined with regard to their tolerances to artificial bile juice, as they uniformly died upon exposure. However, L. helveticus SGU 0011 and L. pentosus SGU 0010 individually survived at rates of 39% and 93%. Also, all four of these strains were confirmed to be tolerant of ten different antibiotics.

Antifungal Activity of Lactic Acid Bacteria Isolated from Kimchi Against Aspergillus fumigatus

  • Kim, Jeong-Dong
    • Mycobiology
    • /
    • v.33 no.4
    • /
    • pp.210-214
    • /
    • 2005
  • More than 120 isolates of lactic acid bacteria obtained from Kimchi was screened for antifungal activity against Aspergillus fumigatus. Approximately 10% of the isolates showed inhibitory activity and only 4.16% (five isolates) exhibited strong activity against the indicator fungus A. fumigatus. The five isolates showed a wide rang of antifungal activity against A. flavus, Fusarium moniliforme, Penicillium commune, and Rhizopus oryzae. They were identified by 16S rDNA sequencing as Lactobacillus cruvatus, L. lactis subsp. lactis, L. casei, L. pentosus, and L. sakei. The effect of Lactobacillus on mycelial growth and fungal biomass as well as its ability to produce toxic compounds were determined. The results indicate that the three species, Lactobacillus casei, L. lactis subsp. lactis, and L. pentosus, are active against A. fumigatus.

Improvement of Antioxidative Activity by Enzyme Treatment and Lactic Acid Bacteria Cultivation in Black Garlic (효소 처리와 유산균 배양에 의한 흑마늘의 항산화 활성 향상)

  • Chae, Hee-Jeong;Park, Dong-Il;Lee, Sung-Chul;Oh, Chul-Hwan;Oh, Nam-Soon;Kim, Dong-Chung;Won, Sun-Im;In, Man-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.660-664
    • /
    • 2011
  • We investigated the improvement of the antioxidative activity of black garlic with enzymatic treatment and lactic acid bacteria cultivation conditions. Celluclast, a commercially-available polysaccharide hydrolyase, was selected to obtain high total polyphenol content in a black garlic suspension. A lactic acid bacterial strain showing fast growth and high acid production in a black garlic suspension was isolated from Kimchi. This strain was identified as Lactobacillus pentosus 310-7. Enzymatically hydrolyzed black garlic was fermented using the L. pentosus 310-7 strain at $30^{\circ}C$ for 15 hr. The pH and titratable acidity achieved were 4.24 and 0.35%, respectively, after 15 hr fermentation. The viable cell population of L. pentosus 310-7 slowly increased to 7.54 log CFU/g. The polyphenolic compound content, known antioxidants, in black garlic was enhanced with Celluclast treatment and L. pentosus 310-7 cultivation. Total polyphenolic compounds were increased to approximately 60% of the initial concentration, and electron donating ability was also improved, from 39.8 to 65.9%.

Characteristics of Antimicrobial Organic Acids Produced by lactobacillus pentosus K34 isolated from Small Intestines of Korean Native Chickens (한국토종닭 소장에서 분리한 Lactobacillus pentosus K34가 생산하는 항균성 유기산의 특성)

  • Lee, Jae-Yeon;Hwang, Kyo-Yeol;Kim, Geun;Sung, Soo-Il;Park, Young-Sik;Baek, Man-Jung;Kim, Kyung-Rye
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.3
    • /
    • pp.241-246
    • /
    • 2002
  • Seven lactic acid bacteria showing highly inhibitory activities against Salmonella gallinarum, Staphylococcus aureus, and Escherichia coli were isolated from Korean native chickens. The inhibitory activities were insensitive to various pretenses indicating that the inhibitory substance is not proteinaceous. The culture broths seem to contain other inhibitory substances in addition to lactic acid. The metabolic profile of organic acids produced by Lactobacillus pentosus K34 was investigated by GC-MSD and 28 different organic acids were detected in the culture broth. Compared with the prominent lactic acid, acetic acid, formic acid, the thirdly most abundant phenyllactic acid showed high inhibitory activity against S. gallinarum. After pHs of the acids were adjusted to S, the inhibitory activities of lactic acid, acetic acid, formic acid against S. gallinarum were greatly reduced while the inhibitory activity of phenyllactic acid was unchanged. The inhibitory activity of the phenyllactic acid was specifically high against S. gallinarum and S. aureus but very low against yeast and mold.

Evaluation of Lactic Acid Bacterial Community in Kimchi Using Terminal-Restriction Fragment Length Polymorphism Analysis (Terminal-Restriction Fragment Length Polymorphism 분석을 이용한 김치발효 관련 유산균 군집의 평가)

  • Shim, Sang-Min;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.247-259
    • /
    • 2008
  • Terminal-restriction fragment length polymorphism (T-RFLP) analysis, one of rapid culture-independent microbial community analysis methods, was used to determine the lactic acid bacterial complexity and dynamics during kimchi fermentation at $15^{\circ}C$ and $4^{\circ}C$. At both temperatures, the common presence of Leuconostoc mesenteroides, Lc. inhae, Lc. kimchi, Weissella koreensis, W. cibaria, Lactobacillus sakei, Lb. curvatus, Lb. plantarum, Lb. paraplantarum, Lb. pentosus, and Lb. brevis was predicted. Lc. citreum and Enterococcus faecalis were detected at $15^{\circ}C$ and $4^{\circ}C$, respectively. W. koreensis predominated during the mid stage of kimchi fermentation whereas lactobacilli were dominants during later stage. Lb. sakei and Lb. curvatus became dominants regardless of fermentation temperature but the growth of Lb. plantarum, Lb. paraplantarum, Lb. pentosus, and Lb. brevis was restricted at psychrophilic temperature. Some species of leuconostocs were maintained until the later stage of kimchi fermentation.

${\beta}-galactosidase$ Activity of Lactobacillus spp. from Pickles (젓갈에서 분리한 Lactobacillus spp.의 ${\beta}-galactosidase$ 특성)

  • Rhee, Young-Hwan;Oh, Min-Keun;Lee, Yong-Kyu;Shin, Seung-Yee;Kim, Jong-Hyun
    • Applied Biological Chemistry
    • /
    • v.39 no.6
    • /
    • pp.437-442
    • /
    • 1996
  • Two strains of Lactobacillus(L.) casfi and one strain of L. Pentosus, which were isolated from pickles, were used to investigate in studing their characteristics of ${\beta}-galactosidase$. The preferable carbon sources and pH of the MRS media for enzyme production from L. casei No.10 was found to be 1.0% lactose and pH 7.5, from L. Pentosus No.63 was 1.0% galactose and pH 7.5, and from L. casei No.36 was 1.0% lactose and pH 6.5, respectively. The maximum enzyme production from each strain was found after 48 hours culture at $30^{\circ}C$ in a medium with preferable carbon source. The optimum reaction temperature with substrate for ${\beta}-galactosidase$ activity was found at $60^{\circ}C$ for all three strains . The stability of enzyme from L. casei No.36 was found to be at $45^{\circ}C$, from L. Pentosus No.63 was found at $55^{\circ}C$. This stability from L. casei No.36 was found at $40^{\circ}C$, but it was reduced to 60% at $55^{\circ}C$. These stabilities of enzymes remained about 90% at $40^{\circ}C$ for all three strains. The optimal pH for enzyme activities was found to be pH 6.5 for all three strains. Enzyme activity remained over 90% for L. casei No.10 at $pH\;5.0{\sim}6.0$, for L. casei No.36 at $pH\;5.0{\sim}8.0$, and for L. pentosus No.63 at $pH\;6.0{\sim}7.0$.

  • PDF

Organic Acid Profiling Analysis in Culture Media of Lactic Acid Bacteria by Gas Chromatography-Mass Spectrometry

  • Lee, Jae-Yeon;Nguyen, Duc-Toan;Park, Young-Shik;Hwang, Kyo-Yeol;Cho, Yong-Seok;Kang, Kyung-Don;Yoon, Jae-Hwan;Yu, Jun-Dong;Yee, Sung-Tae;Ahn, Young-Hwan;Lee, Gwang;Seong, Su-Il;Paik, Man-Jeong
    • Mass Spectrometry Letters
    • /
    • v.3 no.3
    • /
    • pp.74-77
    • /
    • 2012
  • Organic acid (OA) profiling analysis was performed in culture media from Lactobacillus pentosus K34 (L. pentosus K34) and Pediococcus lolli PL24 (P. lolli PL24) by gas chromatography-mass spectrometry (GC-MS) following methoxime/tert-butyldimethylsilyl derivatives. 12 OAs were positively identified in culture media. Most of OA levels from L. pentosus K34 of hetero lactic fermentation were found to be higher when compared with those from P. lolli PL24 of homo lactic fermentation, which may explain different OA metabolism in each strain. In addition, the distorted dodecagonal star patterns were readily distinguishable, and the characteristics of each strain were well represented. The present study demonstrates that the OA metabolic profiling method by GC-MS combined with star pattern recognition is useful for the monitoring study of characteristic OA metabolism in various microorganisms.

Antioxidative and Antiaging Activities and Component Analysis of Lespedeza cuneata G. Don Extracts Fermented with Lactobacillus pentosus

  • Seong, Joon Seob;Xuan, Song Hua;Park, So Hyun;Lee, Keon Soo;Park, Young Min;Park, Soo Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1961-1970
    • /
    • 2017
  • Lespedeza cuneata G. Don is a traditional herb that has been associated with multiple biological activities. In this study, we investigated the antioxidative/antiaging activities and performed an active component analysis of the non-fermented and fermented (using Lactobacillus pentosus) extracts of Lespedeza cuneata G. Don. The antioxidative activities of the fermented extract were higher than those of non-fermented extracts. The elastase inhibitory activity, inhibitory effects on UV-induced MMP-1 expression, and ability to promote type I procollagen synthesis were investigated in Hs68 human fibroblasts cells. These tests also revealed that the fermented extract had increased antiaging activities compared with the non-fermented extract. A component analysis of the ethyl acetate fractions of non-fermented and fermented extracts was performed using TLC, HPLC, and LC/ESI-MS/MS to observe changes in the components before and after fermentation. Six components that were different before and after fermentation were investigated. It was thought that kaempferol and quercetin were converted from kaempferol glucosides and quercetin glucosides, respectively, via bioconversion with the fermentation strain. These results indicate that the fermented extract of L. cuneata G. Don has potential for use as a natural cosmetic material with antioxidative and antiaging effects.

Effect of Artemisiae Argi Folium Fermented with Lactobacillus Pentosus and Saccharomyces Cerevisiae on TNF-${\alpha}$ Production in RAW 264.7 and HepG2 Cells (유산균 발효 애엽과 효모균발효 애엽 물추출물의 종양괴사인자-알파 생성촉진효과)

  • Kim, Youn-Sub;Park, Wan-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.956-961
    • /
    • 2010
  • Tumor necrosis factor-alpha (TNF-${\alpha}$) is a major mediator of immuno-inflammatory activity. The purpose of this study is to investigate whether TNF-${\alpha}$ productions of mouse macrophage RAW 264.7 and human hepatocyte HepG2 are modulated by Artemisiae argi Folium water extract (AW), Lactobacillus pentosus-fermented Artemisiae argi Folium water extract (AFL), and Saccharomyces cerevisiae-fermented Artemisiae argi Folium water extract (AFS) for 3 h of incubation. Effect of AW on cell viability of HepG2 was also investigated. TNF-${\alpha}$ productions were measured by Enzyme-Linked Immnunosorbent Assay method and cell viability was measured by MTT assay. Both AFL and AFS significantly increased TNF-${\alpha}$ productions of RAW 264.7 at the concentration of 50, 100, and 200 ${\mu}g$/mL (p<0.05). Also, AFL and AFS significantly increased TNF-${\alpha}$ productions of HepG2 at the concentration of 50, 100, and 200 ${\mu}g$/mL (p<0.05). AW significantly increased TNF-${\alpha}$ production of HepG2 at the concentration of 100 and 200 ${\mu}g$/mL (p<0.05). AW did not show any cytotoxicity on HepG2 cells for 3 h. These results suggest that AFL, AFS, and AW have the immune-enhancing property related with its increasing effect on TNF-${\alpha}$ production of macrophage and hepatocyte.

Bioconversion of Ginsenoside Rd into Compound K by Lactobacillus pentosus DC101 Isolated from Kimchi

  • Quan, Lin-Hu;Cheng, Le-Qin;Kim, Ho-Bin;Kim, Ju-Han;Son, Na-Ri;Kim, Se-Young;Jin, Hyun-O;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.288-295
    • /
    • 2010
  • Ginsenosides are the principal components responsible for the pharmacological and biological activities of ginseng. Ginsenoside Rd was transformed into compound K using cell-free extracts of food microorganisms, with Lactobacillus pentosus DC101 isolated from kimchi (traditional Korean fermented food) used for this conversion. The optimum time for the conversion was about 72 h at a constant pH of 7.0 and an optimum temperature of about $30^{\circ}C$. The transformation products were identified by thin-layer chromatography and high-performance liquid chromatography, and their structures were assigned using nuclear magnetic resonance analysis. Generally, ginsenoside Rd was converted into ginsenoside F2 by 36 h post-reaction. Consequently, over 97% of ginsenoside Rd was decomposed and converted into compound K by 72 h post-reaction. The bioconversion pathway to produce compound K is as follows: ginsenoside Rd$\rightarrow$ginsenoside F2$\rightarrow$compound K.