Browse > Article
http://dx.doi.org/10.4489/MYCO.2005.33.4.210

Antifungal Activity of Lactic Acid Bacteria Isolated from Kimchi Against Aspergillus fumigatus  

Kim, Jeong-Dong (Institute of Industrial Biotechnology, Inha University)
Publication Information
Mycobiology / v.33, no.4, 2005 , pp. 210-214 More about this Journal
Abstract
More than 120 isolates of lactic acid bacteria obtained from Kimchi was screened for antifungal activity against Aspergillus fumigatus. Approximately 10% of the isolates showed inhibitory activity and only 4.16% (five isolates) exhibited strong activity against the indicator fungus A. fumigatus. The five isolates showed a wide rang of antifungal activity against A. flavus, Fusarium moniliforme, Penicillium commune, and Rhizopus oryzae. They were identified by 16S rDNA sequencing as Lactobacillus cruvatus, L. lactis subsp. lactis, L. casei, L. pentosus, and L. sakei. The effect of Lactobacillus on mycelial growth and fungal biomass as well as its ability to produce toxic compounds were determined. The results indicate that the three species, Lactobacillus casei, L. lactis subsp. lactis, and L. pentosus, are active against A. fumigatus.
Keywords
Antifungal activity; Aspergillus fumigatus; Lactic acid bacteria;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Strom, K., Sjogren, J., Broberg, A. and Schnilrer, J. 2002. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo ($\iota$-Phe-$\iota$-Pro), and cycloCt-Phe-trans-4-OH-$\iota$-Pro) and phenylacetic acid. Appl. Environ. Microbiol. 68: 4322-4327   DOI   ScienceOn
2 Yoon, J.-H., Lee, S.-T., Kim, S.-B., Kim, W.-Y., Goodfellow, M. and Park, Y.-H. 1997. Restriction fragment length polymorphisms analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int. J. Syst. Bacteriol. 47: 111-114   DOI
3 Yuki, N., Watanabe, K., Mike, A., Togami, Y., Tanaka, R., Ohwaki, M. and Morotomi, M. 1999. Survival of a probiotic, Lactobacillus casei strain Shirota, in the gastrointestinal tract: Selective isolation from faces and identification using monoclonal antibodies. Int. J Food Microbiol. 48: 51-57   DOI   ScienceOn
4 Kim, S. K., Lee, E. J., Park, K. Y. and Jun, H. K. 1998. Bacteriocin produced by Lactobacillus curvatus SEI isolated from Kimchi. J. Microbiol. Biotechnol. 8: 588-594
5 Kim, H. T., Park, J. Y., Lee, G G and Kim, J. H. 2003. Isolation of a bacteriocin-producing Lactobacillus plantarum strain from Kimchi. Food Sci. Biotechnol. 12: 166-170
6 Klaenhammer, T. R. 1988. Bactericins of lactic acid bacteria. Biochimie 70: 337-349   DOI   ScienceOn
7 Kobayashi, H. and Ritmann, B. E. 1982. Microbial removal of hazardous organic compounds. Environ. Sci. Technol. 16: 170-183
8 Kumeda, Y., Asao, T., Takahashi, H. and Ichinoe, M. 2003. High prevalence of B and G aflatoxin-producing fungi in sugarcane field soil in Japan: heteroduplex panel analysis identifies a new genotype within Aspergillus section Flavi and Aspergillus nomius. FEMS Microbiol Ecol. 45: 229-238   DOI   ScienceOn
9 Niku-Paavola, M. L., Laitila, A., Mattila-Sandholm, T. and Haikara, A. 1999. New types of antimicrobial compounds produced by Lactobacillus plantarum. J Appl. Microbiol. 86: 29-35   DOI   ScienceOn
10 Okkers, D. J., Dicks, L. M. T., Silvester, M., Joubert, J. J. and Odendaal, H. J. 1999. Characterization of pentocin TV35b acteriocin-like peptide isolate from Lactobacillus pentosus with fungistic effect on Candida albicans. J Appl. Microbiol. 87: 726-734   DOI   ScienceOn
11 Pitt, J. I. and. Hocking, A. D. 1999. Fungi and food spoilage. Chapman & Hall, New York, N.Y
12 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
13 Stiles, J., Plockova, M., Toth, V. and Churnchalova, V. 1999. Inhibition of Fusarium sp. DMF by Lactobacillus strains grown in MRS and Elliker broth. Adv. Food Sci. 21: 117-121
14 Stiles, M. E. 1996. Biopreservation by lactic acid bacteria. Antonie van Leeuwenhock 70: 331-345   DOI
15 Nigam, P., Armour, G., Banat, I. M., Singh, D. and Marchant, R. 2000. Physical removal of textile dyes and solid-state fermentation of dye-adsorbed agricultural residues. Bioresour. Technol. 72: 219-226   DOI   ScienceOn
16 Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A. and Gobetti, M. 2000. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl. Environ. Microbiol. 66: 4084-4090   DOI   ScienceOn
17 Lindgren, S. E. and Dobrogosz, W. J. 1990. Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol. Rev. 87: 149-164   DOI
18 EI-Gendy, S. M. and Marth, E. H. 1981. Growth and aflatoxin production by Aspergillus parasticus in the presence of Lactobacillus casei. J. Food Protect. 44: 211-212
19 Cabo, M. L., Braber, A. F. and Konrrad, P. 2002. Apparent antifungal activity of several lactic acid bacteria against Penicillium discolor is due to acetic acid in the medium. J. Food Protect. 65: 1309-1316
20 Coallier-Ascah, J. and Idziak, E. S. 1985. Interaction between Streptococcus lactis and Aspergillus jlavus on production of aflatoxin. Appl. Environ. Microbiol. 49: 163-167
21 Felsenstein, J. 1993. PHYLIP: Phylogenetic Inference Package. Version 3.5. Seattle, University of Washington, Washington, USA
22 Gourama, H. and Bullerman, L. B. 1995. Inhibition of growth and aflatoxin production of Aspergillus jlavus by Lactobacillus species. J. Food Prot. 58: 1249-1256
23 Guha, S. and Jaffe, P. R. 1996. Biodegradation kinetics of phenanthrene partitioned into the micellar phase of nonionic surfactants. Environ. Sci. Technol. 30: 605-611   DOI   ScienceOn
24 Harris, L. J., Daeschel, M. A., Stiles, M. E. and Klaenhammuer, T. R. 1989. Antimicrobiol activity of lactic acid bacteria against Listeria monocytogenes. J. Food Protect. 52: 384-387
25 Nielson, P. V. and Rios, R. 2000. Inhibition of fungal growth on bread by volatile components from species and herbs, and the possible application in active package, with special emphasis on mustard essential oil. Int. J Food Microbiol. 60: 219-229   DOI   ScienceOn
26 Lee, H. J., Park, C. S., Joo, Y. J., Kim, S. H., Yoon, J. H., Park, Y. H., Hwang, I. K., Ahn, J. S. and Mheen, T. I. 1999. Identification and characterization of bacteriocin-producing lactic acid bacteria isolated from Kimchi. J Microbiol. Biotechnol. 9: 282-291
27 Magnusson, J. and Schnurer, J. 2001. Lactobacillus coryniformis subsp. coryniformis strain SI3 produces a broad-spectrum proteinaceous antifungal compound. Appl. Environ. Microbiol. 67: 1-5   DOI   ScienceOn
28 Magnusson, J., Strom, K., Roos, S., Sjogren, J. and Schnurer, J. 2003. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol. Lett. 219: 129-135   DOI   ScienceOn
29 Nikelson, L. and Kakobson, M. 1997. Quantitative risk analysis of aflatoxin toxicity for the consumers of 'KenKey'-a fermented maize product. Food Control 3: 149-159
30 Dodd, H. M. and Gasson, M. J. 1994. Bacteriocins of lactic acid bacteria. Pp. 211-251. In: Gasson, M. J. and De Vos, W. M. Eds. Genetics and Biotechnology of Lactic Acid Bacteria. Blackie Academic and Professional London, London