• 제목/요약/키워드: Lactobacillus fermentum

검색결과 112건 처리시간 0.027초

원유에서 분리한 Lactobacillus fermentum 450의 생리적 특성과 면역활성 (Physiological Characteristics and Immunomodulation Activity of Lactobacillus fermentum 450 isolated from Raw Milk)

  • 한누리;박선영;임상동
    • Journal of Dairy Science and Biotechnology
    • /
    • 제33권2호
    • /
    • pp.93-102
    • /
    • 2015
  • 본 연구는 원유로부터 면역증진 젖산균을 분리 및 동정하고, 이 균주의 생리적 특성을 규명하여 상업적으로의 이용가능성을 검토하고자 실시하였다. 이를 위해 Modified MRS 분별배지를 사용하여 노란색 집락을 형성하는 균주를 대상으로 면역활성이 높은 균주를 선발한 결과, D205 균주가 최종 선발되었다. D205 균주는 $IL-1{\alpha}$, $TNF-{\alpha}$, NO 값이 각각 2,500pg 이상/mL, 2,000 pg 이상/mL, $11.55{\pm}2.95{\mu}M$로 나타났으며, 동정결과 Lactobacillus fermentum으로 판명되었고, Lactobacillus fermentum 450으로 명명하였다. Lactobacillus fermentum 450의 최적 생장 온도는 $40^{\circ}C$이었으며, 답즙산과 산성의 pH에서 모두 우수한 생존력을나타내었다. 효소활성은 leucine arylamidase와 acid phosphatase가 비교적 높게 나타났다. 항생제 내성 실험 결과, kanamycin, neomycin, polymyxin B에 내성이 있는 반면 novobiocin에 감수성을 나타냈으며, Salmonella Typhimurium에 대해 63.86%의 억제 효과를 지니고 있으나, Escherichia coli와 Staphylococcus aureus에 대해서는 항균력이 거의 없는 것으로 나타났다.

  • PDF

한국여성의 질에서 분리한 Lactobacillus plantarum MG989와 Lactobacillus fermentum MG901의 Gardnerella vaginalis와 Candida albicans에 대한 억제효과 및 특성 규명 (Characterization and Inhibitory Activity of Lactobacillus plantarum MG989 and Lactobacillus fermentum MG901 Isolated from Vaginal Microbiota of Korean Women against Gardnerella vaginalis and Candida albicans)

  • 백남수;이윤엽;한설화;강창호;소재성
    • KSBB Journal
    • /
    • 제31권1호
    • /
    • pp.40-45
    • /
    • 2016
  • Vaginitis, also known as vaginal infection and vulvovaginitis, is an inflammation of the vagina and possibly vulva. The three main kinds of vaginitis are bacterial vaginosis, vaginal candidiasis, and trichomoniasis. The purpose of this study was to characterize Lactobacillus plantarum MG989 and L. fermentum MG901 isolated from the vaginas of healthy Korean women in terms of their inhibitory activity against the vaginitis associated pathogens such as Gardnerella vaginalis and Candida albicans. Co-culture experiments showed that the two Lactobacillus strains MG989 and MG901 significantly reduced the viability of G. vaginalis and C. albicans. Also, the two strains were resistant to bile acid up to 1% and their autoaggregation rates were as high as 83.33%. Further studies are underway to demonstrate that the two strains can be applied as pharmaceutical agents for recovering healthy vaginal ecosystem.

Intestinal Colonization Characteristics of Lactobacillus spp. Isolated from Chicken Cecum and Competitive Inhibition Against Salmonella typhimurium

  • Shin, Jang-Woo;Kang, Jong-Koo;Jang, Keum-Il;Kim, Kwang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권4호
    • /
    • pp.576-582
    • /
    • 2002
  • Probiotics are live microbial feed supplements which beneficially affect the host animal by improving its intestinal microflora. To select the best Lactobacillus spp. as a chicken probiotic, probiotic characteristics of 10 selected Lactobacillus strains isolated from chicken cecum or obtained from KCTC were investigated. The strains were examined for resistance to pH 2.0 and 0.3% oxgall, and adhesion to cecal mucus and cecal epithelial cells. All strains grew in MRS containing 0.3% oxgall. However, Lb. plantarum AYM-10, Lb. fermentum YL-3, AYM-3, and Lb. paracasei YL-6 showed relatively high resistance to 0.3% oxgall. Lb. fermentum YL-3, YM-5, AYM-3, and Lb. paracasei YL-6 survived 4 hours of incubation at pH 2.0. Lb. fermentum YL-3, KCTC 3112, and Lb. plantarum AYL-5 were strongly adhesive to cecal mucus, while the rest showed moderate or low adhesion. Lb. plantarum AYM-10, AYL-1, and AYL-5 had good adhering properties to cecal epithelial cells (30.7$\pm$10.82, 40.2$\pm$20.90, and 14.5$\pm$4.22, respectively). Lb. fermentum YL-3, AYM-3, and KCTC 3547 showed Intermediate adhesion ability, and Lb. plantarum showed better adhesion ability to cecal epithelial cells than Lb. fermentum. Attached Lb. fermentum YL-3 to cecum after 60 min incubation was confirmed using CLSM. Lb. fermentum YL-3 attached to a matrix which was composed of a mucus layer adjacent to intracrypts and pericryptal region. Some Lb. fermentum YL-3 bound to mucosal epithelial cells. From these results, Lb. fermentum YL-3 was selected as a chicken probiotic. In vivo trials of chicks inoculated with Lb. fermentum YL-3 had decreased Salmonella population in cecal contents and livers (p<0.5).

Identification and Characterization of Hydrogen Peroxide-generating Lactobacillus fermentum CS12-1

  • Kang, Dae-Kyung;Oh, H.K.;Ham, J.-S.;Kim, J.G.;Yoon, C.H.;Ahn, Y.T.;Kim, H.U.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권1호
    • /
    • pp.90-95
    • /
    • 2005
  • Lactic acid bacteria were isolated from silage, which produce high level of hydrogen peroxide in cell culture supernatant. The 16S rDNA sequences of the isolate matched perfectly with that of Lactobacillus fermentum (99.9%), examined by a 16S rDNA gene sequence analysis and similarity search using the GenBank database, thus named L. fermentum CS12-1. L. fermentum CS12-1 showed resistance to low pH and bile acid. The production of hydrogen peroxide by L. fermentum CS12-1 was confirmed by catalase treatment and high-performance liquid chromatography. L. fermentum CS12-1 accumulated hydrogen peroxide in culture broth as cells grew, and the highest concentration of hydrogen peroxide reached 3.5 mM at the late stationary growth phase. The cell-free supernatant of L. fermentum CS12-1 both before and after neutralization inhibited the growth of enterotoxigenic Escherichia coli K88 that causes diarrhea in piglets.

Physiological Characteristics and Production of Vitamin K2 by Lactobacillus fermentum LC272 Isolated from Raw Milk

  • Lim, Sang-Dong;Kim, Kee-Sung;Do, Jeong-Ryong
    • 한국축산식품학회지
    • /
    • 제31권4호
    • /
    • pp.513-520
    • /
    • 2011
  • In order to develop a new starter culture for fermented milk, Lactobacillus fermentum LC272 was isolated from raw milk and its physiological characteristics were investigated. The vitamin $K_2$ concentration of L. fermentum LC272 was $184.94{\mu}g/L$ in Rogosa medium and $63.93{\mu}g/L$ in the reconstituted skim milk. The optimum growth temperature for L. fermentum LC272 was determined to be $40^{\circ}C$ and it took 24 h for the pH to reach 5.2 under this condition. L. fermentum LC272 was more sensitive to rifampicin relative of the other 15 different antibiotics tested, and showed most resistance to streptomycin. L. fermentum LC272 showed higher activities to leucine arylamidase and acid phosphatase. It was comparatively tolerant to bile juice and acid and displayed high resistance against Salmonella Typhimurium and Staphylococcus aureus with rates of 82.9 and 86.3% respectively. These results demonstrated that L. fermentum LC272 could be an excellent starter culture for fermented milk with high levels of vitamin $K_2$ production.

Characterization of Lactobacillus fermentum PL9988 Isolated from Healthy Elderly Korean in a Longevity Village

  • Park, Jong-Su;Shin, Eunju;Hong, Hyunjin;Shin, Hyun-Jung;Cho, Young-Hoon;Ahn, Ki-Hyun;Paek, Kyungsoo;Lee, Yeonhee
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권9호
    • /
    • pp.1510-1518
    • /
    • 2015
  • In this work, we wanted to develop a probiotic from famous longevity villages in Korea. We visited eight longevity villages in Korea to collect fecal samples from healthy adults who were aged above 80 years and had regular bowel movements, and isolated lactic-acid-producing bacteria from the samples. Isolated colonies that appeared on MRS agar containing bromophenol blue were identified by means of 16S rRNA sequencing, and 102 of the isolates were identified as lactic-acid-producing bacteria (18 species). Lactobacillus fermentum was the most frequently found species. Eight isolates were selected on the basis of their ability to inhibit the growth of six intestinal pathogens (Escherichia coli O157:H7, Salmonella enterica subsp. enterica Typhimurium, Salmonella enterica subsp. enterica Enteritidis, Enterococcus faecalis, Staphylococcus aureus, and Listeria monocytogenes) and their susceptibility to 15 antimicrobial agents. Among these eight isolates, four Lactobacillus fermentum isolates were found not to produce any harmful enzymes or metabolites. Among them, Lactobacillus fermentum isolate no. 24 showed the strongest binding to intestinal epithelial cells, the highest immune-enhancing activity, anti-inflammation activity, and anti-oxidation activity as well as the highest survival rates in the presence of artificial gastric juice and bile solution. This isolate, designated Lactobacillus fermentum PL9988, has all the characteristics for a good probiotic.

Safety Assessment of Lactobacillus fermentum PL9005, a Potential Probiotic Lactic Acid Bacterium, in Mice

  • PARK JONG-HWAN;LEE YEONHEE;MOON ENPYO;SEOK SEUNG-HYEOK;BAEK MIN-WON;LEE HUI-YOUNG;KIM DONG-JAE;KIM CHANG-HWAN;PARK JAE-HAK
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.603-608
    • /
    • 2005
  • We recently isolated a novel probiotic strain, Lactobacillus fermentum PL9005 (KCCM-10250), from infant feces and showed that it had a potential immunoenhancing effect. In the present study, a safety assessment of the bacteria was performed using a BALB/c mouse model. Mice were administered with L. fermentum PL9005 daily for 28 days. There were no detectable changes in body weight, feed intake, or clinical signs, and no significant difference in hematological parameters or blood biochemistry between the L. fermentum PL9005-fed and control groups. Bacterial translocation was detected in the mesenteric lymph nodes, liver, and spleen of some mice with and without L. fermentum PL9005 feeding, however, the organisms were not related to ingestion of L. fermentum PL9005; this was confirmed by PCR using a species-specific primer. No gross lesions were detected in the liver, spleen, or intestine of L. fermentum PL9005-fed or control mice. Mucosal thickness in the ileum, cecum, and colon of L. fermentum PL9005-fed mice was not significantly different from that of corresponding organs in control mice. No inflammation or epithelial cell degeneration in the intestines was observed in any mice. These results indicate that ingestion of L. fermentum PL9005 is safe in mice and can be applied in the functional food market.

Protective Effect of Lactobacillus fermentum LA12 in an Alcohol-Induced Rat Model of Alcoholic Steatohepatitis

  • Kim, Byoung-Kook;Lee, In-Ock;Tan, Pei-Lei;Eor, Ju-Young;Hwang, Jae-Kwan;Kim, Sae-Hun
    • 한국축산식품학회지
    • /
    • 제37권6호
    • /
    • pp.931-939
    • /
    • 2017
  • Alcoholic liver disease (ALD) is a complex multifaceted disease that involves oxidative stress and inflammation as the key mediators. Despite decades of intensive research, there are no FDA-approved therapies, and/or no effective cure is yet available. Probiotics have received increasing attention in the past few years due to their well-documented gastrointestinal health-promoting effects. Interestingly, emerging studies have suggested that certain probiotics may offer benefits beyond the gut. Lactobacillus fermentum LA12 has been previously demonstrated to play a role in inflammatory-related disease. However, the possible protective effect of L. fermentum LA12 on ALD still remain to be explored. Thus, the aim of this study was to evaluate the possible protective effect of L. fermentum LA12 on alcohol-induced gut barrier dysfunction and liver damage in a rat model of alcoholic steatohepatitis (ASH). Daily oral administration of L. fermentum LA12 in rat model of ASH for four weeks was shown to significantly reduced intestinal nitric oxide production and hyperpermeability. Moreover, small intestinal histological- and qRT-PCR analysis further revealed that L. fermentum LA12 treatment was capable of up-regulating the mRNA expression levels of tight junction proteins, thereby stimulating the restitution of barrier structure and function. Serum and hepatic analyses also revealed that the restoration of epithelial barrier function may prevent the leakage of endotoxin into the blood, subsequently improve liver function and hepatic steatosis in the L. fermentum LA12-treated rats. Altogether, results in this study suggest that L. fermentum LA12 may be used as a dietary adjunct for the prevention and treatment of ASH.

Genome analysis of Limosilactobacillus fermentum JN2019 applied to tumeric fermentation for animal feed

  • Yoo, Heeseop;Yong, Cheng Chung;Oh, Sejong
    • Journal of Animal Science and Technology
    • /
    • 제63권5호
    • /
    • pp.1204-1206
    • /
    • 2021
  • Limosilactobacillus fermentum JN2019, formerly named Lactobacillus fermentum JN2019, was isolated from kimchi. Its genome was completely sequenced using the PacBio RSII sequencing system to explore beneficial phenotypes. In a previous study, L. fermentum JN2019 was used to ferment the by-product of tumeric for use in livestock feed. The 2.3 Mb genome had a high guanine (G) + cytosine (C) content of 50.6% and a 30 kb plasmid. The data will inform the comprehensive understanding of JN2019 and provide insights for potential applications.

Efficacy of Lactobacillus fermentum Isolated from the Vagina of a Healthy Woman against Carbapenem-Resistant Klebsiella Infections In Vivo

  • Tajdozian, Hanieh;Seo, Hoonhee;Kim, Sukyung;Rahim, Md Abdur;Lee, Saebim;Song, Ho-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1383-1392
    • /
    • 2021
  • Carbapenem-resistant Enterobacteriaceae (CRE) that produce Klebsiella pneumoniae carbapenemase are increasingly reported worldwide and have become more and more resistant to nearly all antibiotics during the past decade. The emergence of K. pneumoniae strains with decreased susceptibility to carbapenems, which are used as a last resort treatment option, is a significant threat to hospitalized patients worldwide as K. pneumoniae infection is responsible for a high mortality rate in the elderly and immunodeficient individuals. This study used Lactobacillus fermentum as a candidate probiotic for treating CRE-related infections and investigated its effectiveness. We treated mice with L. fermentum originating from the vaginal fluid of a healthy Korean woman and evaluated the Lactobacilli's efficacy in preventive, treatment, nonestablishment, and colonization mouse model experiments. Compared to the control, pre-treatment with L. fermentum significantly reduced body weight loss in the mouse models, and all mice survived until the end of the study. The oral administration of L. fermentum after carbapenem-resistant Klebsiella (CRK) infection decreased mortality and illness severity during a 2-week observation period and showed that it affects other strains of CRK bacteria. Also, the number of Klebsiella bacteria was decreased to below 5.5 log10 CFU/ml following oral administration of L. fermentum in the colonization model. These findings demonstrate L. fermentum's antibacterial activity and its potential to treat CRE infection in the future.