Intestinal Colonization Characteristics of Lactobacillus spp. Isolated from Chicken Cecum and Competitive Inhibition Against Salmonella typhimurium

  • Shin, Jang-Woo (Institute of Traditional Medicine and Bioscience, Daejeon University) ;
  • Kang, Jong-Koo (Department of Veterinary Medicine, Chungbuk National University) ;
  • Jang, Keum-Il (Department of Food Science and Technology and Research Center for Bioresource and Health, Chungbuk National University) ;
  • Kim, Kwang-Yup (Department of Food Science and Technology and Research Center for Bioresource and Health, Chungbuk National University)
  • Published : 2002.08.01

Abstract

Probiotics are live microbial feed supplements which beneficially affect the host animal by improving its intestinal microflora. To select the best Lactobacillus spp. as a chicken probiotic, probiotic characteristics of 10 selected Lactobacillus strains isolated from chicken cecum or obtained from KCTC were investigated. The strains were examined for resistance to pH 2.0 and 0.3% oxgall, and adhesion to cecal mucus and cecal epithelial cells. All strains grew in MRS containing 0.3% oxgall. However, Lb. plantarum AYM-10, Lb. fermentum YL-3, AYM-3, and Lb. paracasei YL-6 showed relatively high resistance to 0.3% oxgall. Lb. fermentum YL-3, YM-5, AYM-3, and Lb. paracasei YL-6 survived 4 hours of incubation at pH 2.0. Lb. fermentum YL-3, KCTC 3112, and Lb. plantarum AYL-5 were strongly adhesive to cecal mucus, while the rest showed moderate or low adhesion. Lb. plantarum AYM-10, AYL-1, and AYL-5 had good adhering properties to cecal epithelial cells (30.7$\pm$10.82, 40.2$\pm$20.90, and 14.5$\pm$4.22, respectively). Lb. fermentum YL-3, AYM-3, and KCTC 3547 showed Intermediate adhesion ability, and Lb. plantarum showed better adhesion ability to cecal epithelial cells than Lb. fermentum. Attached Lb. fermentum YL-3 to cecum after 60 min incubation was confirmed using CLSM. Lb. fermentum YL-3 attached to a matrix which was composed of a mucus layer adjacent to intracrypts and pericryptal region. Some Lb. fermentum YL-3 bound to mucosal epithelial cells. From these results, Lb. fermentum YL-3 was selected as a chicken probiotic. In vivo trials of chicks inoculated with Lb. fermentum YL-3 had decreased Salmonella population in cecal contents and livers (p<0.5).

Keywords

References

  1. J. Hyg. v.82 Factors affecting the incidence and anti-salmonella activity of the anaerobic caecal flora of the young chick Barnes, E. M.;C. S. Impey;B. J. Stevens https://doi.org/10.1017/S0022172400025687
  2. Am. J. Clin. Nutr. v.33 Manipulation of the crop and intestinal flora of the newly hatched chick Barnes, E. M.;C. S. Impey;D. M. Cooper
  3. J. Appl. Bacteriol. v.46 The intestinal microflora of poultry and game birds during life and after storage Barnes, E. M. https://doi.org/10.1111/j.1365-2672.1979.tb00838.x
  4. J. Antimicrob. Chemother. v.34 Farm animals as a putative reservoir for vancomycin-resistant enterococcal infection in man Bates, J. J.;Z. Jordens;D. T. Griffiths https://doi.org/10.1093/jac/34.4.507
  5. J. Ultrastruct. Res. v.52 Adhesion of Lactobacilli to the chicken crop epithelium Broker, B. E.;R. Fuller https://doi.org/10.1016/S0022-5320(75)80019-0
  6. Kor. J. Appl. Microbiol. Biotechnol. v.28 Isolation and characterization of Lactobacillus fermentum YL-3 as a poultry probiotic Cho, M. K.;K. Kim;C. H. Kim;T. K. Lee;K. Y. Kim
  7. Appl. Environ. Microbiol. v.58 Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture Coconnier, M. H.;T. R. Klaenhammer;S. Kerneis;M. F. Bernet;A. L. Servin
  8. J. Gen. Microbiol. v.135 Protein-mediated adhesion of Lactobacillus fermentum strain 737 to mouse stomach squamous epithelium Conway, P. L.;S. Kjelleberg
  9. Avian Dis. v.34 Effect of dietary lactose on cecal pH, bacteriostatic volatile fatty acids, and Salmonella typhimurium colonization of broiler chicks Corrier, D. E.;A. Jr. Hinton;R. L. Ziprin;R. C. Beier;J. R. DeLoach https://doi.org/10.2307/1591254
  10. Poult. Sci. v.74 Control of Salmonella typhimurium colonization in broiler chicks with a continuous-flow characterized mixed culture of cecal bacteria Corrier, D. E.;D. J. Nisbet;C. M. Scanlan;A. G. Hollister;J. R. Deloach https://doi.org/10.3382/ps.0740916
  11. Avian Dis. v.36 Binding of Salmonella strains to immobilized intestinal mucosal preparations from broiler chickens Craven, S. E.;N. A. Cox;J. S. Bailey;L. C. Blankenship https://doi.org/10.2307/1591504
  12. Lett. Appl. Microbiol. v.21 Adhesion of different bifidobacteria strains to human enterocyte-like Caco-2 cells and comparison with in vivo study Crociani, J.;J. P. Grill;M. Huppert;J. Ballongue https://doi.org/10.1111/j.1472-765X.1995.tb01027.x
  13. J. Antimicrob. Chemother. v.37 Does the use in animals of antimicrobial agents, including glycopeptide antibiotics, influence the efficacy of antimicrobial therapy in humans? Donnelly, J. P.;A. Voss;W. Witte;B. E. Murray https://doi.org/10.1093/jac/37.2.389
  14. Asia Pacific J. Clin. Nutr. v.5 Safety of probiotic bacteria Donohue, D. C.;S. Salminen
  15. J. Antimicrob. Chemother. v.27 Quinolone resistance in campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine Endtz, H. P.;G. J. Ruijs;B. van Klingeren;W. H. Jansen;T. van der Reyden;R. P. Mouton https://doi.org/10.1093/jac/27.2.199
  16. J. Exp. Med. v.104 Experimental enteric Shigella and Vibrio infections in mice and guinea pigs Freter, R. https://doi.org/10.1084/jem.104.3.411
  17. J. Infect. Dis. v.110 In vivo and in vitro antagonism of intestinal bacteria against Shigella flexneri. Ⅱ. The inhibitory mechanism Freter, R. https://doi.org/10.1093/infdis/110.1.38
  18. Avian Dis. v.33 Protection of chicks against Salmonella infection with a mixture of pure cultures of intestinal bacteria Gleeson, T. M.;S. Stavric;B. Blanchfield https://doi.org/10.2307/1591137
  19. Food Science and Technology/Lebensmittel-Wissen und-Technologie v.32 Acid tolerance of Lactobacillus plantarum from Kimchi Hong, S. I.;Y. J. Kim;Y. R. Pyun https://doi.org/10.1006/fstl.1998.0517
  20. J. Med. Microbiol. v.40 Gentamicin resistance in clinical isolates of Escherichia coli encoded by genes of veterinary origin Johnson, A. P.;L. Burns;N. Woodford;E. J. Threlfall;J. Naidoo;E. M. Cooke;R. C. George https://doi.org/10.1099/00222615-40-3-221
  21. Antimicrob. Agents Chemother v.32 High frequency of antimicrobial resistance in human fecal flora Levy, S. B.;B. Marshall;S. Schluederberg;D. Rowse;J. Davis https://doi.org/10.1128/AAC.32.12.1801
  22. Aust. Vet. J. v.53 Prevention of Salmonella typhimurium infection in poultry by pretreatment of chickens and poults with intestinal extracts Lloyd, A. B.;R. B. Cumming;R. D. Kent https://doi.org/10.1111/j.1751-0813.1977.tb14891.x
  23. Science v.277 The chameleon within: Improving antigen delivery Madara, J. L. https://doi.org/10.1126/science.277.5328.910
  24. Appl. Environ. Microbiol. v.56 Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum McDonald, L. C.;H. P. Fleming;H. M. Hassan
  25. Nutrient Requirements of Poulty(8th ed.) National Research Council
  26. Poult. Sci. v.73 Effect of dietary lactose and cell concentration on the ability of a continuous-flow-derived bacterial culture to control Salmonella cecal colonization in broiler chickens Nisbet, D. J.;D. E. Corrier;C. M. Scanlan;A. G. Hollister;R. C. Beier;J. R. Deloach https://doi.org/10.3382/ps.0730056
  27. Nature v.241 New aspects of Salmonella infection in broiler production Nurmi, E.;M. Rantala https://doi.org/10.1038/241210a0
  28. Appl. Environ. Microbiol. v.65 Relationship between acid tolerance, cytoplasmic pH, and ATP and H+-ATPase levels in chemostat cultures of Lactococcus lactis O'Sullivan, E.;S. Condon
  29. J. Antimicrob. Chemother. v.38 Does the use of antimicrobial agents in veterinary medicine and animal husbandry select antibiotic-resistant bacteria that infect man and compromise antimicrobial chemotherapy? Piddock, L. J. https://doi.org/10.1093/jac/38.1.1
  30. Infect. Immun. v.53 Factors responsible for increased susceptibility of mice to intestinal colonization after treatment with streptomycin Que, J. U.;S. W. Casey;D. J. Hentges
  31. Appl. Environ. Microbiol. v.52 Lipoteichoic acids in Lactobacillus strains that colonize the mouse gastric epithelium Sherman, L. A.;D. C. Savage
  32. Appl. Environ. Microbiol. v.58 Evidence for natural transfer of a tetracycline resistance gene between bacteria from the human colon and bacteria from the bovine rumen Shoemaker, N. B.;G. R. Wang;A. A. Salyers
  33. Avian Dis. v.22 Protecting chicks and poults from Salmonellae by oral administration of "normal" gut microflora Snoeyenbos, G. H.;O. M. Weinack;C. F. Smyser https://doi.org/10.2307/1589539
  34. Avian Dis. v.26 Adherence of salmonellae and native gut microflora to the gastrointestinal mucosa of chicks Soerjadi, A. S.;R. Rufner;G. H. Snoeyenbos;O. M. Weinack https://doi.org/10.2307/1589904
  35. Epidemiol. Infect. v.111 A comparison of multiple drug resistance in salmonellas from humans and food animals in England and Wales, 1981 and 1990 Threlfall, E. J.;B. Rowe;L. R. Ward https://doi.org/10.1017/S0950268800056892
  36. Microb. Drug Resist. v.3 Increase in multiple antibiotic resistance in nontyphoidal salmonellas from humans in England and Wales: A comparison of data for 1994 and 1996 Threlfall, E. J.;L. R. Ward;J. A. Skinner;B. Rowe https://doi.org/10.1089/mdr.1997.3.263
  37. J. Appl. Bacteriol. v.62 Surface properties of lactobacilli isolated from the small intestine of pigs Wadstrom, T.;K. Andersson;M. Sydow;L. Axelsson;S. Lindgren;B. Gullmar https://doi.org/10.1111/j.1365-2672.1987.tb02683.x