• Title/Summary/Keyword: Lactate oxidase

Search Result 45, Processing Time 0.033 seconds

Fabrication and Characterization of Enzyme Electrode for Lactate Fuel Cell (젖산 연료전지용 효소전극 제작 및 특성 분석)

  • Zhang, YanQing;Kim, Chang-Joon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.373-378
    • /
    • 2021
  • The study aimed to develop a high-power enzymatic electrode for a wearable fuel cell that generates electricity utilizing lactate present in a sweat as fuel. Anode was fabricated by immobilizing lactate oxidase (LOx) on flexible carbon paper. As the lactate concentration in the electrolyte solution increased, the amount of current generated by catalysis of lactate oxidase increased. The immobilized LOx generated 1.5-times greater oxidation current density in the presence of gold nanoparticles than carbon paper only. Bilirubin oxidase (BOD)-immobilized cathode generated a larger amount of reduction current in the electrolyte saturated with oxygen than purged with nitrogen. A fuel cell composed of two electrodes was fabricated and cell voltage was measured under different discharge current. At the discharge current density of 66.7 ㎂/cm2, the cell voltage was 0.5±0.0 V leading to maximum cell power density of 33.8±2.5 ㎼/cm2.

Histochemical studies on effect of low concentrated carbon monoxide on the caudate nucleus in rat (저농도 일산화탄소가 흰쥐 미상핵에 미치는 영향에 관한 조직화학적 연구)

  • Kim, Jin-sang
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.4
    • /
    • pp.425-431
    • /
    • 1989
  • This study was undertaken to investigate the changes of enzyme activities resulted from low concentrated carbon monoxide poisoning on the caudate nucleus in rat. The activities of cytochrome oxidase, succinate dehydrogenase and lactate dehydragenase were observed histochemically, after the experimental animals were poisoned to 100ppm carbon monoxide for 8 hours every day from one day to 16 days. The materials were sliced from coronal section at the level of the optic chiasm and immediately frozen sections of $10{\mu}m$ thickness were cut on the cryostat at $-15^{\circ}C$ and incubated in the medium containing substrate for histochemical detection of cytochrome oxidase, succinate dehydrogenase and lactate dehydrogenase. The sections were mounted in glycerol gelatin and observed under light microscope. It was obtained that cytochrome oxidase activity decreased moderately and succinate dehydrogenase activity showed marked or moderate activity during entire poisoning period and lactate dehydrogenase activity showed marked or moderate activity from one to 8 days but recovered to normal condition at 16th day.

  • PDF

Fabrication and Characterization of Carbon Nanotube-modified Carbon Paper-based Lactate Oxidase-catalase Electrode (탄소나노튜브로 개질된 탄소종이 기반 젖산산화효소 - 카탈레이즈 전극 제작 및 특성 분석)

  • Ke Shi;Varshini Selvarajan;Yeong-Yil Yang;Hyug-Han Kim;Chang-Joon Kim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.576-583
    • /
    • 2023
  • This study aimed to investigate the impact of enhancing the electrode conductivity and mitigating the production of hydrogen peroxide - a by-product arising from lactate oxidation - on the performance of lactate electrodes. The electrical conductivity of the electrode was improved by modifying the surface of carbon paper with single-walled carbon nanotubes. Catalase was introduced to effectively eliminate the hydrogen peroxide produced during the lactate oxidation reaction. The carbon paper electrode, with simultaneous immobilization of both lactate oxidase and catalase, yielded a current 1.7 times greater than the electrode where only lactate oxidase was immobilized. The electrode in which lactate oxidase and catalase were co-immobilized on the surface of carbon paper modified with single-walled carbon nanotubes, produced a current of 171 µA, which was more than twice as much current as the carbon paper with only lactate oxidase immobilized. The optimized electrode showed a linear response up to lactate concentration of 20 mM, confirming that it can be used as a sensor electrode.

Enzyme Sensors Modified with Avidin/Biotin Systembased Protein Multilayers

  • Anzai, Jun-Ichi;Du, Xiao-Yan;Hoshi, Tomonori;Suzuki, Yasuhiro;Takeshita, Hiroki;Osa, Tetsuo
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.591-596
    • /
    • 1995
  • Enzyme multilayers composed of avidin and biotin-labeled enzymes were prepared on the surface of electrode, through a strong affinity between avidin and biotin (binding constant: ca $10^{15} M^{-1}$). The enzyme multilayers were useful for the improvement of the performance characteristies of enzyme sensors. The output current of the enzyme sensors depended linearly on the number of enzyme layers deposited. Thus, lactate oxidase (LOx) and alcohol oxidase (AlOx) were deposited after being modified with biotin for constructing enzyme sensors sensitive to L-lactate and ethanol respectively. It was also possible to deposit two different kinds of enzymes successively in a single multilayer. The glucose oxidase (GOx) and ascorbate oxidase (AsOx) were built into a multilayer structure on a Platinum electrode. The GOx, AsOx multilayer-modified electrode was useful for the elimination of ascorbic acid interference of the glucose sensor.

  • PDF

Fabrication and Characterization of Lactate Oxidase-catalase-mitochondria Electrode (젖산 산화효소-카탈라아제-미토콘드리아 전극 제작 및 특성 분석)

  • Ke Shi;Keerthi Booshan Manikandan;Young-Bong Choi;Chang-Joon Kim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.238-245
    • /
    • 2024
  • The lactate electrode can be utilized either as an electrode for lactate sensor to monitor the patient's health status, stress level, and athlete's fatigue in real time or lactate fuel cell. In this study, we fabricated a high-performance electrode composed of lactate oxidase, catalase, and mitochondria, and investigated the surface analysis and electrochemical properties of this electrode. Carbon paper modified with single-walled carbon nanotubes (CP-SWCNT) had significantly improved electrical conductivity compared to before modification. The electrode to which lactate oxidase, catalase, and mitochondria were attached (CP-SWCNT-LOx-Cat-Mito) produced a higher current than the electrode to which lactate oxidase and catalase were attached. The amount of reduction current produced by the bilirubin oxidase (BOD)-attached electrode (CP-SWCNT-BOD) was greatly affected by the presence or absence of oxygen in the electrolyte. The fuel cell composed of CP-SWCNT-LOx-Cat-Mito (anode) and CP-SWCNT-BOD (cathode) produced maximum power (29 ㎼/cm2) at a discharge current density of 133 ㎂/cm2. From this study, we had proved that mitochondria is essential for improving lactate sensor and fuel cell performance.

광섬유 생물센서에 의한 혈액 중 포도당 및 젖산 모니터링

  • Son, Ok-Jae;Kim, Jin-Hui;Im, Yong-Sik;Seo, Guk-Hwa;Jeong, Sang-Yun;Lee, Jong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.627-629
    • /
    • 2003
  • In this work fiber-optic biosensor that has been used in medical applications was developed. And we can monitored the concentration of glucose and lactate in blood sample by using developed fiber-optic glucose and lactate sensor. Glucose oxidase(GOD) and Lactate oxidase(LOD) were immobilized by using acrylamide adhesive and zeolite on the tip of the optic fiber.

  • PDF

Fiber-optic biosensor for analysis of glucose and lactate in blood samples (혈액중 포도당과 젖산의 분석을 위한 광섬유 생물센서)

  • Sohn, Ok-Jae;Rhee, Jong-Il
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.28-33
    • /
    • 2006
  • Optical-fiber sensors have been developed to determine the concentrations of glucose and lactic acid in blood samples. Fluorescence dye [tris(2,2'-biphenyridine)-ruthenium(II)-chloride (RuBPY)] was entrapped by using a silicon to the unclad tip of a glass optic fiber. Enzymes like glucose oxidase (GOD) and lactate oxidase (LOD) have been immobilized by acrylamide resin adhesive, adsorption with zeolite or covalent bonding with aminopropyl-triethoxysilan. The fiber-optic glucose/lactate sensor was then used to analyze the concentrations of glucose and lactate in blood samples. The results were compared with the results of HPLC analysis and their difference was in error by less then 5 %.

Development of Optical Fiber Glucose and Lactate Biosensors for Bioprocess Monitoring (생물공정 모니터링을 위한 광섬유 포도당 및 젖산 센서의 개발)

  • Jung, Chang Hwan;Sohn, Ok-Jae;Rhee, Jong Il
    • KSBB Journal
    • /
    • v.32 no.1
    • /
    • pp.35-45
    • /
    • 2017
  • In this work the optical fiber glucose and lactate biosensors were developed by using fluorescent dye and enzyme immobilized on the end tip of an optical fiber. 3-Glycidyloxypropyl)methyldiethoxysilane (GPTMS), (3-Aminopropyl) trimethoxysilane (APTMS) and Methyltrimethoxysilane (MTMS) were used to immobilize glucose oxidase (GOD), lactate oxidase (LOD) and ruthenium(II) complex (tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II), $Ru(dpp)_3^{2+}$) as oxygen sensitive fluorescent dye. MTMS sol-gel was an excellent supporting material for the immobilization of $Ru(dpp)_3^{2+}$, GOD, and LOD on the optical fiber. Storage stability of the optical fiber glucose sensor was kept constant over 20 days, while the optical fiber lactate sensor had constant storage stability over 17 days. The optical fiber glucose and lactate biosensors also maintained good operational stability for 20 hours and 14 hours, respectively. The activities of the immobilized enzymes were most excellent at pH 7 and at $25^{\circ}C$. On-line monitoring of glucose and lactate in a simulated process was performed with the optical fiber glucose and lactate biosensors. On-line monitoring results were agreed with those of off-line data measured with high performance liquid chromatography (HPLC).

Anti-stress and Promoting Effect of the Fruit of Morus alba (상심자(Morus alba)의 운동능력 향상과 스트레스 개선효과)

  • Hwang, Keum-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.95-102
    • /
    • 2005
  • Effects of Morus alba fruit extracts on monoamine oxidase (MAO) activity were examined in rats during and after physical exercise. Oral administration of M. alba extract (0.3 g/kg body weight) significantly increased brain MAO-A activity but decreased liver MAO-B activity when they were measured using serotonin and benzylamine as substrates. Type of physical exercises had significant effect on MAO activity. Brain MAO-A activity markedly decreased with physical activity-related stress compared to normal group, whereas Liver MAO-B activity increased up to 60 min after exercise. Lactate dehydrogenase (LDH) activity and lactate concentration in blood, clinical indices of physical exercise activities, were also determined for correlation to MAO activities. MAO-A activity of rats subjected to oral administration of M. alba extract and physical exercise increased whereas MAO-B and LDH activities, and lactate level decreased, All indices eventually recovered normal levels, These results suggest M. alba may increase capability of physical activities by modulating MAO activities during exercise.

Development of Biosensor for Simultaneous Determination of Glucose, Lactic Acid and Ethanol (포도당, 젖산 및 에탄올의 동시 측정용 바이오센서의 개발)

  • Kim, Jung-Ho;Rhie, Dong-Hee;Kim, Tae-Jin;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.22-34
    • /
    • 1998
  • The purpose of this study is to develop biosensor for determination of glucose, lactate, and ethanol in foods and food-stuffs simultaneously. The multiple cathode system was prepared with an oxygen electrode having one anode and hexagonal cathode. Glucose oxidase, mutarotase, lactate oxidase, alcohol oxidase and catalase were used for immobilization to determine glucose, lactate, and ethanol. These components including ethanol were simultaneously determined by the immobilized enzymes in the multiple cathode system. The determination of the components by enzyme sensor was based on the maximum slope of oxygen consumption from enzyme reaction of each sensor part. The response time for analysis was 1 min. The optimum condition for glucose, lactate and ethanol sensor was found to be 0.1 M potassium phosphate buffer, pH 7.0 at $40^{\circ}C$. Interferences of various sugars and organic acids were investigated. Less than 10% of error was found in determination of the components except organic acids. This difference was compensated by the modified equation. This system was confirmed by conventional methods. It was concluded that the multiple cathode system of this study is for an effective method to determine sugar, organic acid, ethanol simultaneously in foods.

  • PDF