DOI QR코드

DOI QR Code

Fabrication and Characterization of Lactate Oxidase-catalase-mitochondria Electrode

젖산 산화효소-카탈라아제-미토콘드리아 전극 제작 및 특성 분석

  • Ke Shi (Department of Chemical Engineering and RIGET) ;
  • Keerthi Booshan Manikandan (Department of Chemical Engineering and RIGET) ;
  • Young-Bong Choi (Department of Cosmedical & Materials, College of Bio-convergence, Dankook University) ;
  • Chang-Joon Kim (Department of Chemical Engineering and RIGET)
  • 시키 (경상국립대학교 화학공학과 및 그린에너지 연구소) ;
  • 마니칸단 키에르티 부샨 (경상국립대학교 화학공학과 및 그린에너지 연구소) ;
  • 최영봉 (단국대학교 코스메디컬소재학과) ;
  • 김창준 (경상국립대학교 화학공학과 및 그린에너지 연구소)
  • Received : 2024.06.18
  • Accepted : 2024.07.07
  • Published : 2024.08.01

Abstract

The lactate electrode can be utilized either as an electrode for lactate sensor to monitor the patient's health status, stress level, and athlete's fatigue in real time or lactate fuel cell. In this study, we fabricated a high-performance electrode composed of lactate oxidase, catalase, and mitochondria, and investigated the surface analysis and electrochemical properties of this electrode. Carbon paper modified with single-walled carbon nanotubes (CP-SWCNT) had significantly improved electrical conductivity compared to before modification. The electrode to which lactate oxidase, catalase, and mitochondria were attached (CP-SWCNT-LOx-Cat-Mito) produced a higher current than the electrode to which lactate oxidase and catalase were attached. The amount of reduction current produced by the bilirubin oxidase (BOD)-attached electrode (CP-SWCNT-BOD) was greatly affected by the presence or absence of oxygen in the electrolyte. The fuel cell composed of CP-SWCNT-LOx-Cat-Mito (anode) and CP-SWCNT-BOD (cathode) produced maximum power (29 ㎼/cm2) at a discharge current density of 133 ㎂/cm2. From this study, we had proved that mitochondria is essential for improving lactate sensor and fuel cell performance.

젖산 전극은 환자의 건강상태와 스트레스 수준, 및 운동선수의 피로도를 실시간으로 모니터링하는 젖산 센서 또는 젖산 연료전지 전극으로 활용될 수 있다. 본 연구에서는 젖산 산화효소, 카탈라아제, 미토콘드리아로 구성된 고성능 전극을 제작하고 전극의 표면분석 및 전기화학적 특성을 조사하였다. 단일벽 탄소나노튜브로 개질된 탄소종이(CPSWCNT)는 개질 전보다 전기 전도성이 크게 향상되었다. 젖산 산화효소, 카탈라아제, 그리고 미토콘드리아가 부착된 전극(CP-SWCNT-LOx-Cat-Mito)은 젖산 산화효소와 카탈라아제가 부착된 전극에 비하여 많은 전류를 생산하였다. 빌리루빈 산화효소(BOD)가 부착된 전극(CP-SWCNT-BOD)이 생산하는 환원전류량은 전해질의 산소 존재 유무에 따라 크게 영향을 받았다. CP-SWCNT-LOx-Cat-Mito (anode)와 CP-SWCNT-BOD (cathode)로 구성된 연료전지는 133 ㎂/cm2로 방전 시 0.2 V의 셀 전위를 유지하며 29 ㎼/cm2의 전력을 생산하였다. 본 연구결과는 미토콘드리아가 젖산 센서 및 연료전지 성능 향상에 필수적인 생체물질임을 시사한다.

Keywords

Acknowledgement

이 성과는 정부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2020R1F1A1054433, 2021RIS-003)

References

  1. Rathee, K., Dhull, V., Dhull, R. and Singh, S., "Biosensors Based on Electrochemical Lactate Detection: A Comprehensive Review," Biochem. Biophys. Rep., 5, 35-54(2016).
  2. Madden, J., Vaughan, E., Thompson, M., Riordan, A. O., Galvin, P., Lacopino, D. and Teixeira, S. R., "Electrochemical Sensor for Enzymatic Lactate Detection Based on Laser-scribed Graphitic Carbon Modified with Platinum, Chitosan and Lactate Oxidase," Talanta, 246, 123492(2022).
  3. Derbyshire, P. J., Barr, H., Davis, F. and Higson, S. P., "Lactate in Human Sweat: A Critical Review of Research to the Present Day," J. Physiol. Sci., 62, 429-440(2012).
  4. Chung, M., Fortunato, G. and Radacsi, N., "Wearable Flexible Sweat Sensors for Healthcare Monitoring; A Review," J. R. Soc. Interface, 16, 20190217(2019).
  5. Shitanda, I., Takamatsu, K., Niiyama, A., Mikawa, T., Hoshi, Y., Itagaki, M. and Tsujimura, S., "High-power Lactate/O2 Enzymatic Biofuel Cell Based on Carbon Cloth Electrodes Modified with MgO-templated Carbon," J. Power Sources, 436, 226844(2019).
  6. Bandodkar, A. J., You, J.-M., Kim, N.-H., Gu, Y., Kumar, R., Mohan, A. M. V., Kurniawan, J., Imani, S., Nakagawa, T., Parish, B., Parthasarathy, M., Mercier, P. P., Xu, S. and Wang, J., "Soft, Stretchable, High Power Density Electronic Skin-based Biofuel Cells for Scavenging Energy from Human Sweat," Energy Environ. Sci., 10, 1581-1589(2017).
  7. Choi, H., Yeo, M., Kang, Y., Kim, H. J., Park, S. G., Jang, E., Park, S. H., Kim, E. and Kang, S., "Lactate Oxidase/CatalaseDisplaying Nanopaticles Efficiently Consume Lactate in The Tumor Microenvironment to Effectively Suppress Tumor Growth," J. Nanobiotechnol., 21, 5(2023).
  8. Andrus, L. P., Unruh, R., Wisniewski, N. A. and McShane, M. J., "Characterization of Lactate Sensors Based on Lactate Oxidase and Palladium Benzoporphyrin Immobilized in Hydrogels," Biosensors, 5, 398-416(2015).
  9. Sokic-Lazic, D., Andrade, A. R. D. and Minteer, S. D., "Utilization of Enzyme Cascade for Complete Oxidation of Lactate in an Enzymatic Biofuel Cell," Electrochim. Acta, 56, 10772-10775 (2011).
  10. Shi, K., Selvarajan, V., Yang, Y.-Y. and Kim, C.-J., "Fabrication and Characterization of Carbon Nanotube-modified Carbon Paperbased Lactate Oxidase-catalase Electrode," Korean Chem. Eng. Res., 61, 1-8(2023).
  11. McKee, T. and Mckee J. R., Biochemistry: The Molecular Basis of Life, 5th ed., Oxford, New York, NY (2013).
  12. Pichardo, S., Gutierrez-Praena, D., Puerto, M., Sanchez, E., Grilo, A., Camean, A. M. and Jos, A., "Oxidative Stress Response to Carboxylic Acid Functionalized Single Wall Carbon Nanotubes on the Human Intestinal Cell Line Caco-2," Toxicol In Vitro, 26, 672-677(2012).
  13. Timur, S., Haghighi, B., Tkac, J., Pazarlioglu, N., Telefoncu, A., and Gorton, L., "Electrical Wiring of Pseudomonas putida and Pseudomonas fluorescens with Osmium Redox Polymers," Bioelectrochemistry, 71, 38-45(2007).
  14. Kim, H.-H., Mano, N., Zhang, Y., and Heller, A., "A Miniature Membrane-less Biofuel Cell Operating under Physiological Condition at 0.5 V," J. Electrochem. Soc., 150, A209-A213(2003).
  15. Zaib, Q. and Ahmad, F., "Optimization of Carbon Nanotube Dispersions in Water Using Response Surface Methodology," ACS Omega, 4, 86-92(2019).
  16. Koh, B. and Cheng, W., "The Impact of Sonication on the Surface Quality of Single-Walled Carbon Nanotubes," Pharm. Nanotechnol., 104, 2594-2599(2015).
  17. Neikirk, K., Marshall, A. G., Kula, B., Smith, N., Leblanc, S., and Hinton Jr., A., "MitoTracker: A Useful Tool in Need of Better Alternatives," Eur. J. Cell Biol., 102, 151371(2023).
  18. Baracca, A., Sgarbi, G., Solaini, G., and Lenaz, G., "Rhodamine 123 As a Probe of Mitochondrial Membrane Potential: Evaluation of Proton Flux Through F0 during ATP Synthesis," Biochim. Biophys. Acta, 1606, 137-146(2003).
  19. Manke, et al., "Effect of Fiber Length on Carbon NanotubeInduced Fibrogenesis," Int. J. Mol. Sci., 15, 7444-7461(2014).
  20. Zhang, Y, Selvarajan, V., Shi, K. and Kim, C.-J., "Fabrication and Characterization of Glucose-Oxidation-Trehalase Electrode Based on Nanomaterial-Coated Carbon Paper," RSC Adv., 13, 33918-33928(2023).
  21. Cai, B., Li, M., Zhou, J. Tan, L., Li, D. and Ao, Z., "Effect of Oxygen-Containing Functional Groups at SWCNT on the Formation of Sodium and Lithium Dendrites," Surf. Interfaces., 40, 103074(2023).
  22. Khan, N., Anwer, A. H., Ahmad, A., Sabir, S., Sevda, S. and Khan, M. Z., "Investigation of CNT/PPy-Modified Carbon Paper Electrodes Under Anaerobic and Aerobic Conditions for Phenol Bioremediation in Microbial Fuel Cells," ACS Omega., 5, 471-480(2020).
  23. Kuznetsova, A. et al., "Oxygen-containing Functional Groups on Single-wall Carbon Nanotubes: NEXAFS and Vibrational Spectroscopic Studies," J. Am. Chem. Soc., 123, 10699-10704(2001).
  24. Benko, Aleksandra. et al., "Covalently Bonded Surfaces Functional Groups on Carbon Nanotubes: From Molecular Modeling to Practical Applications," Nanoscale, 13, 10152-10166(2001).
  25. Barreca, D., Neri, G., Scala, A., Fazio, E., Gentile, D., Rescifina, A. and Piperno, A., "Covalently Immobilized Catalase on Functionalized Graphene: Effect on the Activity, Immobilization Efficiency, and Tetramer Stability," Biomater. Sci., 6, 3231-3240(2018).
  26. Willey, J. M., Sherwood, L. M. and Woolverton, C. J., Prescott, Harley, and Klein's Microbiology, 7th ed., McGraw-Hill, New York, NY(2008).
  27. Jayakumar, K., Bennett, R. and Leech, D., "Electrochemical Glucose Biosensor Based on an Osmium Redox Polymer and Glucose Oxidase Grafted to Carbon Nanotubes: A Design-of-Experiments Optimisation of Current Density and Stability," Electrochim. Acta., 371, 137845(2021).
  28. Vasylieva, N., Barnych, B., Meiler, A., Maucler, C., Pollegioni, L., Lin, J.-S., Barbier, D. and Marinesco, S., "Covalent Enzyme Immobilization by Poly(Ethylene Glycol) Diglycidyl Ether (PEGDE) for Microelectrode Biosensor Preparation," Biosens. Bioelectron., 26, 3993-4000(2011).
  29. Alhansa, R., Singhb, A., Singhala, C., Naranga, J., Wadhwaa, S. and Mathurb, A., "Comparative Analysis of Single-walled and Multi-walled Carbon Nanotubes for Electrochemical Sensing of Glucose on Gold Printed Circuit Boards," Mater. Sci. Eng., C90, 273-279(2018).
  30. Yuwen, et al., "Carbon Nanotubes: A Powerful Bridge for Conductivity and Flexibility in Electrochemical Glucose Sensors," J. Nanotechnol., 21, 320(2023).
  31. Sokic-Lazic, D., Andrade, A. R. and Minteer, S. D., "Utilization of Enzyme Cascades for Complete Oxidation of Lactate in an Enzymatic Biofuel Cell," Electrochim. Acta., 56, 10772-10775(2011).
  32. Mannella, C. A. and Wang, Q., "Permeability of the Mitochondrial Outer Membrane to Organic Cations," Biochim. Biophys. Acta., 981, 363-366(1989).
  33. Nishikawa, M., Nojima, S., Akiyama, T., Sankawa, U. and Inoue, K., "Interation of Digitonin and Its Analogs with Membrane Cholesterol," J. Biochem., 96, 1231-1239(1984).
  34. Shitanda, I., Hirano, Kai, Loew, N., Watanabe, H., Itagaki, M. and Mikawa, T., "High-performance, Two-step/Bi-enzyme Lactate Biofuel Cell with Lactate Oxidase and Pyruvate Oxidase," J. Power Sources, 498, 229935(2021).