DOI QR코드

DOI QR Code

Fabrication and Characterization of Carbon Nanotube-modified Carbon Paper-based Lactate Oxidase-catalase Electrode

탄소나노튜브로 개질된 탄소종이 기반 젖산산화효소 - 카탈레이즈 전극 제작 및 특성 분석

  • Ke Shi (Department of Chemical Engineering and RIGET) ;
  • Varshini Selvarajan (Department of Chemical Engineering and RIGET) ;
  • Yeong-Yil Yang (Department of Semiconductor Engineering, Gyeongsang National University) ;
  • Hyug-Han Kim (Department of Chemistry, Dankook University) ;
  • Chang-Joon Kim (Department of Chemical Engineering and RIGET)
  • 시키 (경상국립대학교 화학공학과 및 그린에너지 연구소) ;
  • 셀바라잔 바르시니 (경상국립대학교 화학공학과 및 그린에너지 연구소) ;
  • 양영일 (경상국립대학교 반도체공학과) ;
  • 김혁한 (단국대학교 과학기술대학 화학과) ;
  • 김창준 (경상국립대학교 화학공학과 및 그린에너지 연구소)
  • Received : 2023.08.10
  • Accepted : 2023.09.25
  • Published : 2023.11.01

Abstract

This study aimed to investigate the impact of enhancing the electrode conductivity and mitigating the production of hydrogen peroxide - a by-product arising from lactate oxidation - on the performance of lactate electrodes. The electrical conductivity of the electrode was improved by modifying the surface of carbon paper with single-walled carbon nanotubes. Catalase was introduced to effectively eliminate the hydrogen peroxide produced during the lactate oxidation reaction. The carbon paper electrode, with simultaneous immobilization of both lactate oxidase and catalase, yielded a current 1.7 times greater than the electrode where only lactate oxidase was immobilized. The electrode in which lactate oxidase and catalase were co-immobilized on the surface of carbon paper modified with single-walled carbon nanotubes, produced a current of 171 µA, which was more than twice as much current as the carbon paper with only lactate oxidase immobilized. The optimized electrode showed a linear response up to lactate concentration of 20 mM, confirming that it can be used as a sensor electrode.

본 연구에서는 전극의 전기 전도도 증대와 젖산 산화반응의 부산물인 과산화수소 생성 완화가 젖산 산화효소 전극 성능에 미치는 영향을 조사하였다. 유연성 있는 탄소종이 표면을 단일벽 탄소나노튜브로 개질하여 전극의 전기 전도도를 향상시켰다. 카탈라아제를 도입하여 젖산 산화반응에서 발생하는 과산화수소를 제거하였다. 젖산 산화효소와 카탈라아제가 동시에 고정화된 탄소종이 전극은 젖산 산화효소만 고정화된 탄소종이 전극보다 1.7배 많은 전류를 생성하였다. 단일벽 탄소나노튜브로 개질된 탄소종이 표면에 젖산 산화효소와 카탈라아제가 동시에 고정화된 전극은 171 µA의 전류를 생산하였는데, 이는 탄소종이 표면에 젖산 산화효소만 고정화된 전극이 생산하는 전류보다 2배 높은 값이다. 최적화된 전극은 젖산 농도가 20 mM까지 선형반응을 보여 센서용 전극으로 사용 가능함을 확인하였다.

Keywords

Acknowledgement

이 성과는 정부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2020R1F1A1054433, 2021RIS-003).

References

  1. Rathee, K., Dhull, V., Dhull, R., Singh, S., "Biosensors Based on Electrochemical Lactate Detection: A Comprehensive Review," Biochem. Biophys. Rep., 5, 35-54(2016). 
  2. Madden, J., Vaughan, E., Thompson, M., Riordan, A.O., Galvin, P., Lacopino, D. and Teixeira, S.R., "Electrochemical Sensor for Enzymatic Lactate Detection Based on Laser-scribed Graphitic Carbon Modified with Platinum, Chitosan and Lactate Oxidase," Talanta, 246, 123492(2022). 
  3. Derbyshire, P. J., Barr, H., Davis, F. and Higson, S. P., "Lactate in Human Sweat: A Critical Review of Research to the Present Day," J. Physiol. Sci., 62, 429-440(2012).  https://doi.org/10.1007/s12576-012-0213-z
  4. Chung, M., Fortunato, G. and Radacsi, N., "Wearable Flexible Sweat Sensors for Healthcare Monitoring; A Review," J. R. Soc. Interface, 16, 20190217(2019). 
  5. Kim, H. H., Yoo, J. and Choi, M. K., "Non-invasive Wearable Continuous Monitoring Sensors," Polym. Sci. Technol., 31, 286-290(2020). 
  6. Nagamine, K., Mano, T., Nomura, A., Ichimura, Y., Izawa, R., Furusawa, H., Matsui, H., Kumaki, D. and Tokito, S., "Noninvasive Sweat-Lactate Biosensor Employing a Hydrogel-Based Touch Pad," Sci. Rep., 9, 10102(2019). 
  7. He, W., Wang, C., Wang, H., Jian, M., Lu, W., Liang, X., Zhang, X., Yang, F. and Zhang, Y., "Integrated Textile Sensor Patch for Real-time and Multiplex Sweat Analysis," Sci. Adv., 5, eaax0649(2019). 
  8. Hoovels, K. V., Xuan, X., Cuartero, M., Gijssel, M., Swaren, M. and Crespo, G. A., "Can Wearable Sweat Lactate Sensors Contrivute to Sports Physiology?," ACS Sens., 6, 3496-3508(2021).  https://doi.org/10.1021/acssensors.1c01403
  9. Rahman, M. M., Shiddiky, M. J. A., Rahman, M. A. and Shim, Y.-B., "A Lactate Biosensor Based on Lactate Dehydrogenase/Nicotinamide Adenine Dinucleotide (Oxidized Form) Immobilized on A Conducting Polymer/Multiwall Carbon Nanotube Composite Film," Anal Biochem., 384, 159-165(2009).  https://doi.org/10.1016/j.ab.2008.09.030
  10. Hiraka, K., Tsugawa, W., Asano, R., Yokus, M. A., Ikebukuro, K., Daniele, M. A. and Sode, K., "Rational Design of Direct Electron Transfer Type L-Lactate Dehydrogenase for The Development of Multiplexed Biosensor," Biosens. Bioelectron., 176, 112933(2021). 
  11. Gamero, M., Pariente, F., Lorenzo, E. and Alonso, C., "Nanostructured Rough Gold Electrodes for the Development of Lactate Oxidase-Based Biosensors," Biosens. Bioelectron., 25, 2038-2044(2010).  https://doi.org/10.1016/j.bios.2010.01.032
  12. Choi, H., Yeo, M., Kang, Y., Kim, H. J., Park, S. G., Jang, E., Park, S. H., Kim, E. and Kang, S., "Lactate Oxidase/Catalase-Displaying Nanopaticles Efficiently Consume Lactate in The Tumor Microenvironment to Effectively Suppress Tumor Growth," J. Nanobiotechnol., 21, 5(2023). 
  13. Andrus, L. P., Unruh, R., Wisniewski, N. A. and McShane, M. J., "Characterization of Lactate Sensors Based on Lactate Oxidase and Palladium Benzoporphyrin Immobilized in Hydrogels," Biosensors, 5, 398-416(2015).  https://doi.org/10.3390/bios5030398
  14. Pichardo, S., Gutierrez-Praena, D., Puerto, M., Sanchez, E., Grilo, A., Camean, A. M. and Jos, A., "Oxidative Stress Response to Carboxylic Acid Functionalized Single Wall Carbon Nanotubes on the Human Intestinal Cell Line Caco-2," Toxicol In Vitro, 26, 672-677(2012).  https://doi.org/10.1016/j.tiv.2012.03.007
  15. Heller, A., "Electrical Connection of Enzyme Redox Centers to Electrodes," J. Phys. Chem., 96, 3579-3587(1992).  https://doi.org/10.1021/j100188a007
  16. Ammam, M. and Fransaer, J., "AC-Electrophoretic Deposition of Metalloenzymes: Catalase As A Case Study for The Sensitive and Selective Detection of H2O2," Sens. Actuators B: Chem., 160, 1063-1069(2011).  https://doi.org/10.1016/j.snb.2011.09.027
  17. Zamocky, M., Regelsberger, G., Jakopitsh, C. and Obinger, C., "The Molecular Peculiarities of Catalase-Peroxidases," FEBS Lett., 492, 177-182(2001).  https://doi.org/10.1016/S0014-5793(01)02237-2
  18. Quyang, T., Feldman, B. J. and Chen, K., "Stabilized Lactate Responsive Enzymes, Electrodes and Sensors, and Methods for Making and Using the Same," European Patent No. EP 3 307 164 B1(2016). 
  19. Quyang, T., Feldman, B. J. and Chen, K., "Stabilized Lactate Responsive Enzymes, Electrodes and Sensors, and Methods for Making and Using the Same," U.S. Patent No. US2016/0362716 A1(2016). 
  20. Koposova, E., Shumilova, G., Ermolenko, Y., Kisner, A., Offen-hausser, A. and Mourzina, Y., "Direct Electrochemistry of cyt C and Hydrogen Peroxide Biosensing on Oleylamine-And Citrate-Stabilized Gold Nanostructures," Sens. Actuators B: Chem., 207, 1045-1052(2015).  https://doi.org/10.1016/j.snb.2014.07.105
  21. Voitko, K., Toth, A., Demianenko, E., Dobos, G., Berke, B., Bakalinska, O., Grebenyuk, A., Tombacz, E., Kuts, V., Tarasenko, Y., Kartel, M. and Laszlo, K., "Catalytic Performance of Carbon Nanotubes in H2O2 Decomposition: Experimental and Quantum Chemical Study," J. Colloid Interface Sci., 437, 283-290(2015).  https://doi.org/10.1016/j.jcis.2014.09.045
  22. Moreno, J., Kasai, K., David, M., Nakanishi, H. and Kasai, H., "Hydrogen Peroxide and Adsorption on Fe-Filled Single-Walled Carbon Nanotubes: A Theoretical Study," J. Phys.: Condens. Matter, 21, 064219(2009). 
  23. Engel, P. S., Billups, W. E., Abmayr Jr, D. W., Tsvaygboym, K. and Wang, R., "Reaction of Single-Walled Carbon Nanotubes with Organic Peroxides," J. Phys. Chem. C, 112, 695-700(2008).  https://doi.org/10.1021/jp0770054
  24. Willey, J. M., Sherwood, L. M. and Woolverton, C. J., Prescott, Harley, and Klein's Microbiology, 7th ed., McGraw-Hill, New York, NY(2008). 
  25. Payne, M. E., Zamarayeva, A., Pister, V. I., Yamamoto, N. A. D. and Arias, A. C., "Printed, Flexible Lactate Sensors: Design Considerations Before Performing On-Body Measurements," Sci. Rep., 9, 13720(2019). 
  26. Bhalla, N., Jolly, P., Formisano, N. and Estrela, P., "Introduction to Biosensors," Essays Biochem., 60, 1-8(2016).  https://doi.org/10.1042/EBC20150001
  27. Ibupoto, Z. H., Shah, S. M. U. A., Khun, K. and Willander, M., "Electrochemical L-Lactic Acid Sensor Based on Immobilized ZnO Nanorods with Lactate Oxidase," Sensors, 12, 2456-2466(2012).  https://doi.org/10.3390/s120302456
  28. Cunha-Silva, H. and Arcos-Martinez, M. J., "Dual Range Lactate Oxidase-Based Screen Printed Amperometric Biosensor for Analysis of Lactate in Diversified Samples," Talanta, 188, 779-787(2018).  https://doi.org/10.1016/j.talanta.2018.06.054
  29. Jiang, D., Xu, C., Zhang, Q., Ye, Y., Cai, Y., Li, K., Li, Y., Huang, X. and Wang, Y., "In-Situ Preparation of Lactate-Sensing Membrane for The Noninvasive And Wearable Analysis of Sweat," Biosens. Bioelectron., 210, 114303(2022).