• Title/Summary/Keyword: Laboratories

Search Result 2,761, Processing Time 0.028 seconds

Estimation of Long-term Aging Compressive Strength Through Non-Destructive Testing of Concrete Structure Using Mineral Admixtures (혼화재를 사용한 콘크리트 구조체의 비파괴 시험에 의한 장기재령 압축강도 추정)

  • Kim, Jeong-Sup;Shin, Yong-Seok;Lee, Chang-Hyun;Lee, Seung-Jung;Kim, Kwang-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.426-434
    • /
    • 2011
  • Recently, the use of mineral admixtures in concrete has been studied in many laboratories, and been applied in the field. But the non-destructive testing equation proposed in Japan for normal strength concrete has been used to determine compressive strength, because there has been a lack of systematic research on the compressive strength of concrete using mineral admixtures. For this reason, it is essential to suggest a non-destructive testing equation to estimate the compressive strength of concrete using mineral admixtures. Therefore, this study made a cylindrical specimen and core tube specimen of concrete using a mineral admixture, and suggested a strength estimation of long-term age (4 years) through non-destructive and destructive tests. The results of the research are as follows. Comparing error rates between conventional suggested equations and this estimated equation shows some differences by age, but the error rate of this study was reduced to 0.3 %~115.0 % compared to conventional equations by re-bound hammering, 0.2 %~22.8 % by the ultrasound velocity method and 0.5 %~102.3 % by complex method. Accordingly, it is judged to be suitable for assessing the compressive strength of concretes using mineral admixtures.

The Experimental Study on the Resistance Forces and the Failure Temperatures of H-Shaped Steel Compressive Members by Elevated Temperatures (온도상승에 의한 H-형강 압축재의 내력과 파괴온도에 관한 실험적 연구)

  • Choi, Hyun Sik;Kang, Seong Deok;Kim, Jae Eok
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.131-139
    • /
    • 2013
  • The object of this paper is to perform the experiments to investigate the relationship of the resistance forces and the failure temperatures on the failure behaviors of H-shaped steel compressive members. H-shaped members(SS400) were used for the test models and the tests for the elevated temperatures were performed by ISO 834 in FILK(Fire Insurers Laboratories of Korea). The local, overall buckling stresses and a yielding stresses for the failure temperatures were compared with the compressive stresses for the loading forces of test models, the yielding strength and elastic modulus reduction factor of the steel at a high temperature were based on the criteria of the EC3(Eurocode 3) Part1.2(1993). The slenderness ratio was fixed by 45.4 and the compressive forces corresponded with 50%, 70% and 80% of the yielding forces at the normal temperatures were chosen for the loading forces of the test models. The failure temperatures of the test models were investigated under three kinds of loading conditions. It was known that the resistance forces have come close to the yielding forces, not the elastic buckling loads evaluated by EC3 at the failure temperatures obtained from the tests which are related to the failure temperatures and the loading stresses.

Effect of Hot Pressing/Melt Mixing on the Properties of Thermoplastic Polyurethane

  • Lee, Young-Hee;Kang, Bo-Kyung;Kim, Han-Do;Yoo, Hye-Jin;Kim, Jung-Soo;Huh, Jae-Ho;Jung, Young-Jin;Lee, Dong-Jin
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.616-622
    • /
    • 2009
  • In-depth understanding of the influence of hot pressing and melt processing on the properties of thermoplastic polyurethane (TPU) is critical for effective mechanical recycling of TPU scraps. Therefore, this study focused on the effects of hot pressing and melt mixing on molecular weight (MW), polydispersity index (PDI), melt index (MI), characteristic IR peaks, hardness, thermal degradation and mechanical properties of TPU. The original TPU pellet (o-TPU) showed two broad peaks at lower and higher MW regions. However, four TPU film samples, TPU-0 prepared only by hot pressing of o-TPU pellet and TPU-1, TPU-2 and TPU-3 obtained by hot pressing of melt mixed TPUs (where the numbers indicate the run number of melt mixing), exhibited only a single peak at higher MW region. The TPU-0 film sample had the highest $M_n$ and the lowest PDI and hardness. The TPU-1 film sample had the highest $M_w$ and tensile modulus. As the run number of melt mixing increased, the peak-intensity of hydrogen bonded C=O stretching increased, however, the free C=O peak intensity, tensile strength/elongation at break and average MW decreased. All the samples showed two stage degradations. The degradation temperatures of TPU-0 sample (359 $^{\circ}C$ and 394 $^{\circ}C$)were higher than those of o-TPU (342 $^{\circ}C$ and 391 $^{\circ}C$). While all the melt mixed samples degraded at almost the same temperature (365 $^{\circ}C$ and 381 $^{\circ}C$). The first round of hot pressing and melt mixing was found to be the critical condition which led to the significant changes of $M_n$/$M_w$/PDI, MI, mechanical property and thermal degradation of TPU.

Interpretation of Migration of Radionuclides in a Rock Fracture Using a Particle Tracking Method (입자추적법을 사용한 암반균열에서 핵종이동 해석)

  • Chung Kyun Park;Pil Soo Hahn;Douglas J. Drew
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.176-188
    • /
    • 1995
  • A particle tracking scheme was developed in order to model radionuclide transport through a tortuous flow Held in a rock fracture. The particle tacking method may be used effectively in a heterogeneous flow field such as rock fracture. The parallel plate representation of the single fracture fails to recognize the spatial heterogeneity in the fracture aperture and thus seems inadequate in describing fluid movement through a real fracture. The heterogeneous flow field une modeled by a variable aperture channel model after characterizing aperture distribution by a hydraulic test. To support the validation of radionuclide transport models, a radionuclide migration experiment was performed in a natural fracture of granite. $^3$$H_2O$ and $^{131}$ I are used as tracers. Simulated results were in agreement with experimental result and therefore support the validity of the transport model. Residence time distributions display multipeak curves caused by the fast arrival of solutes traveling along preferential fracture channels and by the much slower arrival of solutes following tortous routes through the fracture. Results from the modelling of the transport of nonsorbing tracer through the fracture show that diffusion into the interconnected pore space in the rock mass has a significant effect on retardation.

  • PDF

High rate deposition of poly-si thin films using new magnetron sputtering source

  • Boo, Jin-Hyo;Park, Heon-Kyu;Nam, Kyung-Hoon;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.186-186
    • /
    • 2000
  • After LeComber et al. reported the first amorphous hydrogenated silicon (a-Si: H) TFT, many laboratories started the development of an active matrix LCDs using a-Si:H TFTs formed on glass substrate. With increasing the display area and pixel density of TFT-LCD, however, high mobility TFTs are required for pixel driver of TF-LCD in order to shorten the charging time of the pixel electrodes. The most important of these drawbacks is a-Si's electron mobiliy, which is the speed at which electrons can move through each transistor. The problem of low carier mobility for the a-Si:H TFTs can be overcome by introducing polycrystalline silicon (poly-Si) thin film instead of a-Si:H as a semiconductor layer of TFTs. Therefore, poly-Si has gained increasing interest and has been investigated by many researchers. Recnetly, fabrication of such poly-Si TFT-LCD panels with VGA pixel size and monolithic drivers has been reported, . Especially, fabricating poly-Si TFTs at a temperature mach lower than the strain point of glass is needed in order to have high mobility TFTs on large-size glass substrate, and the monolithic drivers will reduce the cost of TFT-LCDs. The conventional methods to fabricate poly-Si films are low pressure chemical vapor deposition (LPCVD0 as well as solid phase crystallization (SPC), pulsed rapid thermal annealing(PRTA), and eximer laser annealing (ELA). However, these methods have some disadvantages such as high deposition temperature over $600^{\circ}C$, small grain size (<50nm), poor crystallinity, and high grain boundary states. Therefore the low temperature and large area processes using a cheap glass substrate are impossible because of high temperature process. In this study, therefore, we have deposited poly-Si thin films on si(100) and glass substrates at growth temperature of below 40$0^{\circ}C$ using newly developed high rate magnetron sputtering method. To improve the sputtering yield and the growth rate, a high power (10~30 W/cm2) sputtering source with unbalanced magnetron and Si ion extraction grid was designed and constructed based on the results of computer simulation. The maximum deposition rate could be reached to be 0.35$\mu$m/min due to a high ion bombardment. This is 5 times higher than that of conventional sputtering method, and the sputtering yield was also increased up to 80%. The best film was obtained on Si(100) using Si ion extraction grid under 9.0$\times$10-3Torr of working pressure and 11 W/cm2 of the target power density. The electron mobility of the poly-si film grown on Si(100) at 40$0^{\circ}C$ with ion extraction grid shows 96 cm2/V sec. During sputtering, moreover, the characteristics of si source were also analyzed with in situ Langmuir probe method and optical emission spectroscopy.

  • PDF

Immunohistochemical study of the pancreatic endocrine cells in the ICR mice (ICR 마우스 췌장 내분비세포에 대한 면역조직화학적 연구)

  • Ku, Sae-kwang;Lee, Hyeung-sik;Lee, Jae-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.1
    • /
    • pp.21-28
    • /
    • 2002
  • The regional distribution and relative frequency of the pancreatic endocrine cells in the ICR mouse were studied by immunohistochemical (PAP) method using four types of specific antisera against insulin, glucagon, somatostatin and human pancreatic polypeptide (PP). The pancreas of mice could be divided into three portions; pancreatic islets, exocrine and pancreatic ducts. Pancreatic islets, furthermore, were subdivided into three regions (central, mantle and peripheral region) according to their located types of immunoreactive cells. In the pancreatic islet portions, insulin-immunoreactive cells were located in the central and mantle regions but most of somatostatin-, glucagon- and PP-immunoreactive cells were detected in the mantle and peripheral regions with various frequencies. In addition, PP-immunoreactive cells were also found in the central regions of pancreatic islets of ICR mouse. In the exocrine portions, all four types of immunoreactive cells were demonstrated in the ICR mouse. In the pancreatic duct portions, insulin- and glucagon-immunoreactive cells were situated in the epithelial lining of ICR mouse with a few and rare frequencies, respectively. In addition, rare PP-immunoreactive cells were also demonstrated in the subepithelial regions of the pancreatic duct. However, no somatostatin-immunoreactive cells were demonstrated.

Biological Control of Crown Gall

  • Kerr, Allen;Biggs, John;Ophel, Kathy
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.11-26
    • /
    • 1994
  • Crown gall of stonefruit and nut trees is one of the very few plant diseases subject to efficient biological control. The disease is caused by the soil-inhabiting bacteria Agrobacterium tumefaciens and Agrobacterium rhizogenes and the original control organism was a non-pathogenic isolate of A. rhizogenes strain K84. Control is achieved by dipping planting material in a cell suspension of strain K84 which specifically inhibits pathogenic strains containing a nopaline Ti plasmid. Because the agrocin 84-encoding plasmid (pAgK84) is conjugative, it can be transmitted from the control strain to pathogenic strains which, as a result, become immune to agrocin 84 and cannot be controlled. To prevent this happening, the transfer genes on pAgK84 were located and then largely eliminated by recombinant DNA technology. The resulting construct, strain K1026, is transfer deficient but controls crown gall just as effectively as does strain K84. Field data from Spain confirm that pAgK84 can transfer to pathogenic recipients from strain K84 but not from strain K1026. The latter has been registered in Australia as a pesticide and is the first genetically engineered organism in the world to be released fro commercial use. It is recommended as a replacement for strain K84 to prevent a breakdown in the effectiveness of biological control of crown gall. Several reports indicate that both strains K84 and K1026 sometimes control crown gall pathogens that are resistant to agrocin 84. A possible reason for this is that both strains produce a second antibiotic called 434 which inhibits growth of nearly all isolates of A. rhizogenes, both pathogens and non-pathogens. Crown gall of grapevine is caused by another species, Agrobacterium vitis. It is resistant to agrocin 84 and cannot be controlled by strains K84 or K1026. It is different from other crown gall pathogens in several characteristics, including the fact that, although a rhizosphere coloniser, its also lives systemically in the vascular tissue of grapevine. Pathogen free propagating material can be obtained from tissue culture or, less surely, by heat therapy of dormant cuttings. A number of laboratories are searching for a biocontrol strain that will prevent, or at least delay, reinfection. A non-pathogenic A. vitis strain F/25 from South Africa looks very promising in this regard.

  • PDF

EEG Recording Method for Quantitative Analysis (정량적 분석을 위한 뇌파 측정 방법)

  • Heo, Jaeseok;Chung, Kyungmi
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.4
    • /
    • pp.397-405
    • /
    • 2019
  • Quantitative electroencephalography (QEEG) has been widely used in research and clinical fields. QEEG has been widely used to objectively document cerebral changes for the purpose of identifying the electrophysiological biomarkers across various clinical symptoms and for the stimulation of specific cortical regions associated with cognitive function. In electroencephalography (EEG), the difference in quantitative and qualitative analyses is discriminated not by its measurement methods and relevant clinical or research environments, but by its analysis methods. When performing a qualitative analysis, it is possible for a medical technologist or experienced researchers to read the EEG waveforms to exclude artifacts. However, the quantitative analysis is still based on mathematical modeling, and all EEG data are included for the analysis, leading the results to be affected by unexpected artifacts. In the hospital setting, the case that the medical technologists in charge of the EEG test perform academic research has been little reported, compared to other clinical physiological measurement-based research. This is because there are few laboratories specialized in clinical physiological research. In this respect, this study is expected to be utilized as a basic reference material for medical technologists, students, and academic researchers, all of whom would like to conduct a quantitative analysis.

Fire Alarm Sound Transmission in Apartment Units (공동주택에서의 화재경보음 전달)

  • Jeong, Jeong-Ho
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.67-75
    • /
    • 2018
  • To reduce the number of casualties in the case of fire, an alarm sound needs to be delivered to the people who remain in the apartment unit. On the other hand, it was reported that the fire alarm sound generated in the elevator hall was not delivered sufficiently to the people staying in the apartment units. In this study, the background noise level and noise level generated in an apartment unit were measured during the day and night time. In addition, the transmission of the fire alarm sound into the each room of apartment units was simulated and compared with the background noise level. The fire alarm sound generated in the elevator halls was reduced by the fire door and doors, and was not transmitted sufficiently into the internal spaces of the apartment units. Starting evacuation action was difficult after hearing the fire alarm sound generated outside the apartment units. To improve the transmission of an alarm sound to the inner spaces of apartment units, an acoustic simulation was carried out for cases where the alarm sound generator was installed on a wall-pad in the living room and the alarm sound generator was installed on the ceiling of each rooms in apartment units. Background noise of + 15 dB and 75 dB (A) were satisfied when alarm sound generator was installed on the ceiling of each room.

Preparation and Characterization of Poly(ethylene glycol) Based Pranlukast Solid Dispersion (친수성 Poly(ethylene glycol)을 이용한 프란루카스트 고체분산체의 제조 및 특성 분석)

  • Kim, Hyeong-Eun;Hwang, Jun-Seok;Cho, Sun-Hang;Kim, Young-Jin;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.41-46
    • /
    • 2012
  • In this study, poly(ethylene glycol) (PEG) was used as a hydrophilic polymer carrier to develop solid dispersion formulations for enhancing solubility and dissolution rate of pranlukast, one of poorly soluble drugs that has been broadly used for the treatment of asthma. PEG based solid dispersions with or without poloxamer were prepared by hot melting and solvent evaporation methods. The resultant solid dispersions were characterized by DSC and powder X-ray measurements, and their morphological properties were observed to be partially changed to amorphous state with reduced crystallinity. Dissolution and solubility tests showed that the solubility and dissolution rate of the solid dispersions were significantly enhanced. The solid dispersion formulation prepared by the hot melting method with a chemical composition of pranlukast:PEG:poloxamer = 1:5:1 demonstrated the most enhanced solubility and dissolution rate. The results suggest that the solid dispersions based on PEG and poloxamer are promising systems for the enhancement of solubility and bioavailability of pranlukast.