Effect of Hot Pressing/Melt Mixing on the Properties of Thermoplastic Polyurethane

  • Lee, Young-Hee (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Kang, Bo-Kyung (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Kim, Han-Do (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Yoo, Hye-Jin (POSCO Technical Research Laboratories) ;
  • Kim, Jung-Soo (Korea Institute of Footwear & Leather Technology) ;
  • Huh, Jae-Ho (Busan Branch of Korea Apparel Testing & Research Institute) ;
  • Jung, Young-Jin (Department of Biomaterials Engineering, Pusan National University) ;
  • Lee, Dong-Jin (Korea Institute of Ceramic Engineering and Technology)
  • Published : 2009.08.25

Abstract

In-depth understanding of the influence of hot pressing and melt processing on the properties of thermoplastic polyurethane (TPU) is critical for effective mechanical recycling of TPU scraps. Therefore, this study focused on the effects of hot pressing and melt mixing on molecular weight (MW), polydispersity index (PDI), melt index (MI), characteristic IR peaks, hardness, thermal degradation and mechanical properties of TPU. The original TPU pellet (o-TPU) showed two broad peaks at lower and higher MW regions. However, four TPU film samples, TPU-0 prepared only by hot pressing of o-TPU pellet and TPU-1, TPU-2 and TPU-3 obtained by hot pressing of melt mixed TPUs (where the numbers indicate the run number of melt mixing), exhibited only a single peak at higher MW region. The TPU-0 film sample had the highest $M_n$ and the lowest PDI and hardness. The TPU-1 film sample had the highest $M_w$ and tensile modulus. As the run number of melt mixing increased, the peak-intensity of hydrogen bonded C=O stretching increased, however, the free C=O peak intensity, tensile strength/elongation at break and average MW decreased. All the samples showed two stage degradations. The degradation temperatures of TPU-0 sample (359 $^{\circ}C$ and 394 $^{\circ}C$)were higher than those of o-TPU (342 $^{\circ}C$ and 391 $^{\circ}C$). While all the melt mixed samples degraded at almost the same temperature (365 $^{\circ}C$ and 381 $^{\circ}C$). The first round of hot pressing and melt mixing was found to be the critical condition which led to the significant changes of $M_n$/$M_w$/PDI, MI, mechanical property and thermal degradation of TPU.

Keywords

References

  1. P. T. Williams and R. Bagri, Int. J. Energy Res., 28, 31 (2004) https://doi.org/10.1002/er.949
  2. S. Jonna and J. Lyons, Polym. Test., 24, 428 (2005) https://doi.org/10.1016/j.polymertesting.2005.01.009
  3. N. T-Dintcheva, F. P. La Mantia, F. Trotta, M. P. Luda, G. Camino, M. Paci, L. DiMaio, and D. Acierno, Polym. Adv. Technol., 12, 552 (2001) https://doi.org/10.1002/pat.147
  4. F. Perugini, M. L. Mastellone, and U. Arena, Environ. Progr., 24, 137 (2005) https://doi.org/10.1002/ep.10078
  5. C. H. Sung, K. S. Lee, K. S. Lee, S. M. Oh, M. S. Kim, and H. M. Jeong, Macromol. Res., 15, 443 (2007) https://doi.org/10.1007/BF03218812
  6. Y. H. Kim, S. J. Choi, J. M. Kim, M. S. Han, W. N. Kim, and K. T. Bang, Macromol. Res., 15, 676 (2007) https://doi.org/10.1007/BF03218949
  7. A. Ferry, P. Jacobsson, J. D. van Heumen, and J. R. Stevens, Polymer, 37, 737 (1995) https://doi.org/10.1016/0032-3861(96)87248-X
  8. S. H. Kim, B. K. Kim, and H. Lim, Macromol. Res., 16, 467(2008) https://doi.org/10.1007/BF03218546
  9. J. H. Saunder and K. C. Frisch, in Polyurethane: Chemistry, Interscience, New York, 1962
  10. V. W. Strichatrapimuk and S. L. Cooper, J. Macromol. Sci. Phys., B15, 267 (1978)
  11. R. E. Camargo, C. W. Macosko, M. Tirrell, and S. T. Wellingghoff, Polym. Commum., 24, 314 (1983) https://doi.org/10.1016/0032-3861(83)90269-0
  12. L. Born and H. Hespe, Colloid Polym. Sci., 263, 335 (1985) https://doi.org/10.1007/BF01412250
  13. R. W. Seymour and S. L. Cooper, Macromolecules, 6, 48 (1973) https://doi.org/10.1021/ma60031a008
  14. V. V. Zharkov, A. G. Strikovski, and T. E. Verteletskaya, Polym. Sci., 34, 142 (1992)
  15. L. D’Orazio, G. Gentile, C. Mancarella, E. Martuscelli, and V. Massa, Polym. Test., 20, 227 (2001) https://doi.org/10.1016/S0142-9418(00)00027-1
  16. F. M. B. Coutinho and M. C. Delpech, Polym. Degrad. Stabil., 70, 49 (2000) https://doi.org/10.1016/S0141-3910(00)00087-2
  17. L. J. Bellamy in The Infrared Spectra of Complex Molecules, Chapman and Hall, New York, 1980
  18. C. Zhang, Z. Ren, Z. Yin, H. Qian, and D. Ma, Polym. Bull., 60, 97 (2008) https://doi.org/10.1007/s00289-007-0837-y
  19. V. P. Pshenitsyna, N. N. Molotkova, M. P. Noskova, and B. Ya. Aksel’rod, Zhurnal Prikladnoi Spektroskopii, 29, 486 (1977)
  20. S. Zhang, Z. Ren, S. He, Y. Zhu, and C. Zhu, Spectrochim. Acta Part A, 66,188 (2007) https://doi.org/10.1016/j.saa.2006.02.041
  21. F. Wang, Ph. D. Dissertation, Blacksburge, Virginia, 1998
  22. N. Grassie and M. Zulfiqar, J. Polym. Sci.: Polym. Chem. Ed., 16, 1563 (1978) https://doi.org/10.1002/pol.1978.170160710
  23. M. Herrera, G. Matuschek, and A. Kettrup, Polym. Degrad. Stabil., 78, 323 (2002) https://doi.org/10.1016/S0141-3910(02)00181-7
  24. P. S. Wang, W. Y. Chiu, L. W. Chen, B. L. Denq, T. M. Don, and Y. S. Chiu, Polym. Degrad. Stabil., 66, 307 (1999) https://doi.org/10.1016/S0141-3910(99)00070-1
  25. M. Thorn, Can. J. Chem., 45, 2537 (1967) https://doi.org/10.1139/v67-415
  26. F. S. Chung, Polym. Degrad. Stabil., 92, 1393 (2007) https://doi.org/10.1016/j.polymdegradstab.2007.02.020
  27. E. Dyer and G. E. Newborn, J. Am. Chem. Soc., 80, 5495 (1958) https://doi.org/10.1021/ja01553a045
  28. E. Dyer and R. E. Reed, J. Org. Chem., 26, 4388 (1961) https://doi.org/10.1021/jo01069a050
  29. J. R. Saunders, Rubber Chem. Technol., 32, 337 (1959) https://doi.org/10.5254/1.3542399
  30. N. Grassie and M. Zulfiqar, J. Polym. Sci.: Polym. Chem. Ed., 18, 265 (1980) https://doi.org/10.1002/pol.1980.170180125
  31. D. Joel and A. Hauser, Die Angewandte Makromolekulare Chemie, 217, 191 (1994) https://doi.org/10.1002/apmc.1994.052170116
  32. K. Herzog, Makromol. Chem. Macromol. Symp., 52, 307 (1991) https://doi.org/10.1002/masy.19910520132
  33. F. P. La Mantia, D. Curto, and R. Scaffaro, J. Appl. Polym. Sci., 86, 1899 (2002) https://doi.org/10.1002/app.11136
  34. M. A. J. Lozano-Gonzalez, M. A. T. Rodriguez-Hernandez, E. A. Gonzalez-De los Santos, and J. Vilapando-Olmos, J. Appl. Polym. Sci., 76, 851 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000509)76:6<851::AID-APP11>3.0.CO;2-D
  35. M. L. Maspoch, H. E. Ferrando, and J. I. Velasco, Macromol. Sym., 194, 295 (2003) https://doi.org/10.1002/masy.200390096
  36. N. Ahmed, J. H. Khan, I. Hussain, and S. H. Hamid, J. Polym. Mater., 16, 341 (1999)
  37. N. Rust, E. E. Ferg, and I. Masalova, Polym. Test., 26, 130 (2006)
  38. H. Hinsken, S. Moss, J. R. Pauquet, and H. Zweife, Polym. Degrad. Stabil., 34, 279 (1991) https://doi.org/10.1016/0141-3910(91)90123-9