DOI QR코드

DOI QR Code

Preparation and Characterization of Poly(ethylene glycol) Based Pranlukast Solid Dispersion

친수성 Poly(ethylene glycol)을 이용한 프란루카스트 고체분산체의 제조 및 특성 분석

  • Kim, Hyeong-Eun (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Hwang, Jun-Seok (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Cho, Sun-Hang (Nanobiomaterials Laboratories, Korea Research Institute of Chemical Technology) ;
  • Kim, Young-Jin (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Huh, Kang-Moo (Department of Polymer Science and Engineering, Chungnam National University)
  • 김형은 (충남대학교 고분자공학과) ;
  • 황준석 (충남대학교 고분자공학과) ;
  • 조선행 (한국화학연구원 바이오소재연구센터) ;
  • 김영진 (충남대학교 고분자공학과) ;
  • 허강무 (충남대학교 고분자공학과)
  • Received : 2011.06.01
  • Accepted : 2011.08.11
  • Published : 2012.01.25

Abstract

In this study, poly(ethylene glycol) (PEG) was used as a hydrophilic polymer carrier to develop solid dispersion formulations for enhancing solubility and dissolution rate of pranlukast, one of poorly soluble drugs that has been broadly used for the treatment of asthma. PEG based solid dispersions with or without poloxamer were prepared by hot melting and solvent evaporation methods. The resultant solid dispersions were characterized by DSC and powder X-ray measurements, and their morphological properties were observed to be partially changed to amorphous state with reduced crystallinity. Dissolution and solubility tests showed that the solubility and dissolution rate of the solid dispersions were significantly enhanced. The solid dispersion formulation prepared by the hot melting method with a chemical composition of pranlukast:PEG:poloxamer = 1:5:1 demonstrated the most enhanced solubility and dissolution rate. The results suggest that the solid dispersions based on PEG and poloxamer are promising systems for the enhancement of solubility and bioavailability of pranlukast.

본 연구에서는 대표적인 난용성 약물이며, 경구용 천식 치료제 중 하나인 pranlukast의 용해도 및 용출성 개선 제제 개발을 위해 친수성 고분자인 poly(ethylene glycol) (PEG)와 고분자 계면활성제인 poloxamer를 사용하여 열용융법(HM)과 용매증발법(SE)에 의한 고체분산체를 제조하였다. 고체분산체 내 약물의 결정성 변화를 DSC, PXRD로 분석한 결과, 약물의 결정성이 크게 감소하였고, 부분적으로 무정형으로 변화하였음을 확인하였다. 용출시험 및 용해도 분석결과, 고유 약물에 비해 용해도와 용출 속도가 크게 증가하였다. Pranlukast, PEG, poloxamer가 1:5:1의 조성으로 열용융법에 의해 제조된 고체분산체가 가장 우수한 용해도 및 용출속도 향상 결과를 보였다. 결과적으로 PEG과 poloxamer를 이용한 고체분산체 제제는 난용성 약물인 pranlukast의 용해도와 생체이용률을 개선하는데 유용하게 응용될 것으로 기대된다.

Keywords

References

  1. D. Horter and J. B. Dressman, Adv. Drug Deliv. Rev., 46, 75 (2001). https://doi.org/10.1016/S0169-409X(00)00130-7
  2. D. J. van Drooge, W. L. J. Hinrichs, M. R. Visser, and H. W. Frijlink, Int. J. Pharm., 310, 220 (2006). https://doi.org/10.1016/j.ijpharm.2005.12.007
  3. E. Merisko-Liversidge, G. G. Liversidge, and E. R. Cooper, Eur. J. Pharm. Sci., 18, 113 (2003). https://doi.org/10.1016/S0928-0987(02)00251-8
  4. N. Rasenack, H. Hartenhauer, and B. W. Muller, Int. J. Pharm., 254, 137 (2003). https://doi.org/10.1016/S0378-5173(03)00005-X
  5. N. Rasenack and B. W. Muller, Pharm. Res., 19, 1894 (2002). https://doi.org/10.1023/A:1021410028371
  6. T. Imai, T. Nishiyama, M. Ueno, and M. Otagiri, Chem. Pharm. Bull., 37, 2251 (1989). https://doi.org/10.1248/cpb.37.2251
  7. Y. Taniguchi, G. Tamura, M. Honma, T. Aizawa, N. Maruyama, K. Shirato, and T. Takishimal, J. Allergy. Clin. Immunol., 92, 507 (1993). https://doi.org/10.1016/0091-6749(93)90074-P
  8. G. Graham, R. Giles, T. Grinter, J. Hayler, S. Howie, G. Johnson, I. Mann, V. Novack, P. Oxley, J. Quick, and N. Smith, Synth. Commun., 27, 1065 (1997). https://doi.org/10.1080/00397919708003052
  9. N. Tanaka, K. Imai, K. Okimoto, S. Ueda, Y. Tokunaga, R. Ibuki, K. Higaki, and T. Kimura, J. Control. Release, 112, 51 (2006). https://doi.org/10.1016/j.jconrel.2006.01.020
  10. T. Ohara, S. Kitamura, T. Kitagawa, and K. Terada, Int. J. Pharm., 302, 95 (2005). https://doi.org/10.1016/j.ijpharm.2005.06.019
  11. C. W. Pouton, Eur. J. Pharm. Sci., 29, 278 (2006). https://doi.org/10.1016/j.ejps.2006.04.016
  12. C. Leuner and J. Dressman, Eur. J. Pharm. Sci., 50, 47 (2000).
  13. D. Q. M. Craig, Int. J. Pharm., 231, 131 (2002). https://doi.org/10.1016/S0378-5173(01)00891-2
  14. T. Ohara, S. Kitamura, T. Kitagawa, and K. Terda, Int. J. Pharm., 302, 95 (2005). https://doi.org/10.1016/j.ijpharm.2005.06.019
  15. D. Bikiaris, G. Z. Papageorgiou, A. Stergiou, E. Pavlidou, E. Karavas, F. Kanaze, and M. Georgarakis, Thermochim. Acta, 439, 58 (2005). https://doi.org/10.1016/j.tca.2005.09.011
  16. A. Billon, B. Bataille, G. Cassanas, and M. Jacob, Int. J. Pharm., 203 159 (2000). https://doi.org/10.1016/S0378-5173(00)00448-8
  17. T. T. Tran, P. H. Tran, and B. Lee, Eur. J. Pharm. Biopharm., 72, 83 (2009). https://doi.org/10.1016/j.ejpb.2008.12.009
  18. K. Sekiguchi and N. Obi, Chem. Pham. Bull., 9, 866 (1961). https://doi.org/10.1248/cpb.9.866
  19. G. M. Walker, C. Holland, M. Ahmad, and D. Q. M. Craig, Chem. Eng. Sci., 60, 3867 (2005). https://doi.org/10.1016/j.ces.2005.02.007
  20. S. Sethia and E. Squillante, Int. J. Pharm., 272, 1 (2004). https://doi.org/10.1016/j.ijpharm.2003.11.025
  21. S. P. Newman, A. Hollingsworth, and A. R. Clark, Int. J. Pharm., 102, 127 (1994). https://doi.org/10.1016/0378-5173(94)90047-7
  22. H. Murakoshi, T. Saotome, Y. Fujii, T. Ozeki, Y. Takashima, H. Yuasa, and H. Okada, J. Drug Del. Sci. Tech., 15, 223 (2005). https://doi.org/10.1016/S1773-2247(05)50036-4
  23. A. F. Asker and C. W. Whitworth, Pharmazie, 30, 530 (1975).
  24. C. Y. Perng, A. S. Kearney, K. Patel, N. R. Palepu, and G. Zuber, Int. J. Pharm., 176, 31 (1998). https://doi.org/10.1016/S0378-5173(98)00296-8
  25. G. M. Khan and J. B. Zhu, Drug Dev. Ind. Pharm., 24, 455 (1998). https://doi.org/10.3109/03639049809085643
  26. J. H. Lee, J. Kopecek, and J. D. Andrade, J Biomed. Mater. Res., 23, 351 (1989). https://doi.org/10.1002/jbm.820230306
  27. V. Majerik, G. Charbit, E. Badens, G. Horváth, L. Szokonya, N. Bosc, and E. Teillaud, J. Supercrit. Fluids, 40, 101 (2007). https://doi.org/10.1016/j.supflu.2006.03.027