• Title/Summary/Keyword: Label-Free

Search Result 156, Processing Time 0.034 seconds

A Review of Label-Free Biosensing Optical Integrated Devices (광집적 무표지 바이오 센서 기술)

  • Oh, K.R.
    • Electronics and Telecommunications Trends
    • /
    • v.28 no.5
    • /
    • pp.57-71
    • /
    • 2013
  • 바이오센서 산업은 국민 삶의 질을 향상시키고 미래 국가 경쟁력을 증진시킬 수 있다는 기대 속에 고부가가치 산업 육성을 제고할 수 있는 분야로 주목 받고 있는 가운데, 실시간 진단, 고감도화, 소형화를 위한 집적화, 저가격화, 다기능화 등에 대한 이슈가 지속적으로 제기되고 있다. 이러한 이슈들을 해결할 수 있는 대안 기술로써, 높은 Q 지수를 갖는 광 마이크로 공진기에 대한 관심이 높아지고 있으며, 최근의 성공적인 연구 결과들은 차세대 미세 바이오 센서 시스템 구현과 실용화의 가능성을 높여주고 있다. 특히, 단일 분자 및 나노 입자까지도 측정 가능한 고감도의 무표지 센서 기술은 특성은, 각종 감염성 질환 및 암표지자의 실시간 조기 진단과 개인별 맞춤 치료, 환경 유해물질 검출, 신약물질 발굴 등 새로운 시장창출에 대한 기대감을 증폭시키고 있다.

  • PDF

Imaging the Enzymatic Reaction of Urease Using Liquid Crystal-Based pH Sensor

  • Hu, Qiong-Zheng;Jang, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4377-4381
    • /
    • 2011
  • In this study, real-time and label-free methods for monitoring the enzymatic reaction of urease, which releases ammonia through the hydrolysis of urea in an aqueous solution, were developed using a liquid crystal (LC)-based pH sensor. Nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB), doped with 4'-pentyl-biphenyl-4-carboxylic acid (PBA), exhibited a shift in optical appearance from bright to dark when it was in contact with ammonia generated from the enzymatic reaction between urease and urea. This optical change was attributed to the anchoring transitions of LCs caused by hydrophobic interactions between the tails of deprotonted PBA ($PBA^-$) molecules and the LCs at the aqueous/LC interface. This novel technique holds great promise for the sensitive detection of urease along with its substrates and inhibitors.

Mass Spectrometry Imaging of Microbes

  • Yang, Hyojik;Goodlett, David R.;Ernst, Robert K.;Scott, Alison J.
    • Mass Spectrometry Letters
    • /
    • v.11 no.3
    • /
    • pp.41-51
    • /
    • 2020
  • Microbes influence many aspects of human life from the environment to health, yet evaluating their biological processes at the chemical level can be problematic. Mass spectrometry imaging (MSI) enables direct evaluation of microbial chemical processes at the atomic to molecular levels without destruction of valuable two-dimensional information. MSI is a label-free method that allows multiplex spatiotemporal visualization of atomic- or molecular-level information of microbial and microberelated samples. As a result, microbial MSI has become an important field for both mass spectrometrists and microbiologists. In this review, basic techniques for microbial MSI, such as ionization methods and analyzers, are explored. In addition, we discuss practical applications of microbial MSI and various data-processing techniques.

Nanowell Array based Sensor and Its Packaging

  • Lee, JuKyung;Akira, Tsuda;Jeong, Myung Yung;Lee, Hea Yeon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.19-24
    • /
    • 2014
  • This article reviews the recent progress in nanowell array biosensors that use the label-free detection protocol, and are detected in their natural forms. These nanowell array biosensors are fabricated by nanofabrication technologies that should be useful for developing highly sensitive and selective also reproducible biosensors. Moreover, electrochemical method was selected as analysis method that has high sensitivity compared with other analysis. Finally, highly sensitive nanobiosensor was achieved by combining nanofabrication technologies and classical electrochemical method. Many examples are mentioned about the sensing performance of nanowell array biosensors will be evaluated in terms of sensitivity and detection limit compared with other micro-sized electrode without nanowell array.

The Principles and Metrical Applications of Immunocsensors (면역센서의 원리와 의학적 응용)

  • 김의락;백세환
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.121-136
    • /
    • 2002
  • Immunosensors are of great interest because of their potential utility as specific, simple, label-free, direct detection means and provision of reduction in size, cost and time of analysis comparing with conventional immunoassay. In the last two decades, many reports have been published on the use of immunosensors for a wide range of applications to clinical diagnostics, pharmaceutical chemistry, environmental monitoring, biotechnology and food industries. There are also numerous transduction techniques developed such as electrochemical techniques, piezoelectric crystal, and surface plasmon resonance receiving much attention for the direct monitoring of immune reactions at solid surfaces. In this article, the principles, characteristics, structures, fonctions and clinical applications of immunosensors were reviewed

Tunable Photonic Band Gap Materials and Their Applications

  • Gang, Yeong-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.261-261
    • /
    • 2010
  • Photonic band gap (PBG) materials have been of great interest due to their potential applications in science and technology. Their applications can be further extended when PBG becomes tunable against various chemical and electrical stimuli. In recent, it was found that tunable photonic band gap materials can be achieved by incorporating stimuli-responsive smart gels into PBG materials. For example, the characteristic volume phase transition of gels in response to the various external stimuli including temperature, pH, ionic strength, solvent compositions and electric field were recently combined with the unique optical properties of photonic crystals to form unprecedented highly responsive optical components. Since these responsive photonic crystals are capable of reversibly converting chemical or electrical energy into characteristic optical signals, they have been considered as a good platform for label-free chemical or biological detection, actuators or optical switches as well as a model system for investigating gel swelling behavior. Herein, we report block copolymer photonic gels self-assembled from polystyrene-b-poly (2-vinyl pyridine) (PS-b-P2VP) block copolymers. In this talk, we are going to demonstrate that selective swelling of lamellar structure can be effectively utilized for fabricating PBG materials with extremely large tunability. Optical properties and their applications will be discussed.

  • PDF

Mercury ion detection technique using KPFM (KPFM을 통한 수은이온 검출 방법)

  • Park, Chanho;Jang, Kwewhan;Lee, Sangmyung;You, Juneseok;Na, Sungsoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.358-360
    • /
    • 2014
  • For the several decades, various nanomaterials are broadly used in industry and research. With the growth of nanotechnology, the study of nanotoxicity is being accelerated. Particularly, mercury ion is widely used in real life. Because the mercury is representative high toxic material, it is highly recommended to detect the mercury ion. In previous reported work, thymine-thymine mismatches (T-T) capture mercury ion and create very stable base pair ($T-Hg^{2+}-T$). Here, we performed the high sensitive sensing method for direct label free detection of mercury ions and DNA binding using Kelvin Probe Force Microscope (KPFM). In this method, 30 base pairs of thymine (T-30) is used for mercury specific DNA binding ($T-Hg^{2+}-T$). KPFM is able to detect the mercury ion because there is difference between bare T-30 DNA and mercury mediated DNA ($T-Hg^{2+}-T$).

  • PDF

Development and evaluation of surface plasmon resonance imaging for the detection of antibodies against classical swine fever virus in swine

  • Cho, Ho-Seong;Lee, Tae-Uk;Park, Nam-Yong
    • Korean Journal of Veterinary Service
    • /
    • v.30 no.2
    • /
    • pp.205-209
    • /
    • 2007
  • A protein chip based on surface plasmon resonance (SPR) imaging was developed for measuring classical swine fever virus (CSFV) antibody using a recombinant gp55 protein as an antigen. The diagnostic potential of SPR imaging for detecting antibodies to the CSFV gp55 protein was compared with that of a enzyme -linked immunosorbent assay (ELISA) using 70 pig sera. There was a strong positive correlation between the SPR imaging and ELISA (n=70, r=0.916, p<0.01). Therefore, the SPR imaging, which is a label-free and high-through put method, is expected to be a valuable tool in the serodiagnosis of CSFV.

Data Analysis Methods for Quantitative Proteomics Research

  • Gwon Kyeong-Hun
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2006.02a
    • /
    • pp.38-44
    • /
    • 2006
  • 프로테오믹스는 생물체 안에 포함되어 있는 단백질을 통합적으로 연구하는 학문이다. 단백질을 동정(Protein identification)하고, 단백질의 상태를 분석(Protein characterization)하며, 단백질의 양적 변화를 관찰(Protein quantitation)한다. 유전자로부터 mRNA 로 복제되고 codon 의 규칙에 따라 합성되는 단백질이 세포 내에 얼만큼 존재하는가라는 단백질의 양적인 변화는 세포 내의 환경에 따라 시시각각 변화할 수 있으며, 이러한 변화의 추적은 단백질의 기능을 밝히는 기초자료로서 중요성을 가진다. 특히 질병의 조기 진단을 위한 바이오마커를 발굴하기 위한 스크리닝 역할로서, 단백질의 발현 양상을 비교하는 프로테오믹스는 기대를 모으고 있다. 단백질에 대한 분석, 특히 질량분석기에 의해 초고속으로 대량의 단백질 데이터를 생산하는 프로테오믹스의 연구는 정량적인 단백질 발현양상 분석의 정확도를 높이기 위해 다양한 실험기법과 데이터 분석기법을 동원하고 있다. 이번 발표에서는 프로테오믹스에서 단백질의 양을 측정하기 위한 실험 방법들과 그에 따른 데이터 분석 방법들을 소개하고자 한다. 프로테오믹스 연구의 초창기부터 사용되어온 2차원 전기영동법에 의해 생성되는 2D-gel image 에서의 spot 분석법으로부터, 탄뎀 질량분석기를 사용하는 ICAT, iTRAQ 등의 labeling 방법에 의한 정량분석, 그리고 질량분석기의 정확도를 최대한으로 활용하는 label-free 방법에 대한 기본 개념을 살펴보고 데이터 분석 기술의 적용 방법을 알아본다.

  • PDF

Biosensor Based on Distributed Bragg Reflector Photonic Crystals for the Detection of Protein A

  • Jung, Daehyuk
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2010
  • The functionalized photonic crystals of porous silicon biosensor was prepared for the application as a label-free biosensor based on distributed Bragg reflector interferometer. Prepared distributed Bragg reflector of porous silicon biosensor displayed sharp reflection in the optical reflective spectra. The mean of construction of molecular architectures on distributed Bragg reflector of porous silicon surfaces was investigated for the step-by-step binding interaction with amines, biotin, avidin, and biotinylated protein A. The subsequent introduction of avidin, and biotinylated protein A resulted in the reflectivity shifted to longer wavelengths, indicative of a change in refractive indices induced by binding of biomolecules.