• Title/Summary/Keyword: LTCC process

Search Result 117, Processing Time 0.033 seconds

Design and Manufacture of Multi-layer VCO by LTCC (저온 동시소성 세라믹을 이용한 적층형 VCO의 설계 및 제작)

  • Park, Gwi-Nam;Lee, Heon-Yong;Kim, Ji-Gyun;Song, Jin-Hyung;Rhie, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.291-294
    • /
    • 2003
  • The circuit substrate was made from the Low Temperature Cofired Ceramics(LTCC) that a $\varepsilon_\gamma$ was 7.8. Accumulated Varactor and the low noise transistor which were a Surface Mount Device-type element on LTCC substrate. Let passive element composed R, L, C with strip-line of three dimension in the multilayer substrate circuit inside, and one structure accumulate band-pass filter, resonator, a bias line, a matching circuit, and made it. Used Screen-Print process, and made Strip-line resonator. A design produced and multilayer-type VCO(Voltage Controlled Oscillator), and recognized a characteristic with the Spectrum Analyzer which was measurement equipment. Measured multilayer structure VCO is oscillation frequency 1292[MHz], oscillation output -28.38[dBm], hamonics characteristic -45[dBc] in control voltage 1.5[V], A phase noise is -68.22[dBc/Hz] in 100 KHz offset frequency. The oscillation frequency variable characteristic showed 30[MHz/V] characteristic, and consumption electric current is approximately 10[mA].

  • PDF

A Study on the Design of the Low Noise Amplifier for 2.4GHz wireless LAN using LICC Passive Components (LTCC 적층소자를 이용한 2.4GHz 무선랜 대역 LNA의 설계에 관한 연구)

  • Oh, Jae-Wook;Kim, Hyeong-Seok;Chung, Tae-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1599-1600
    • /
    • 2006
  • In this paper, a small size, $7{\times}6\;mm^2$, Low Noise Amplifier(LNA) using LTCC process was fabricated with multi-layer structure for 2.4GHz wireless LAN. The measured results demonstrate that the bandwidth is 130 MHz, and the operating frequency is from 2.39GHz to 2.52GHz. The power gain is above 7.3 dB in the operating frequency range and the gain flatness is 0.5 dB. The maximum S11 is -4 dB and the maximum S22 is -7.5 dB. The noise figure is less than 1.83 dB. The measured power gain, S11 and S22 were had poorer performance than the simulation results. The reason for this discrepancy is that the input and output matching was not performed exactly. However, the noise figure of the LTCC low noise amplifier is better than simulation result. It is found that it is possible to fabricate a LTCC low noise amplifier in a small size.

  • PDF

Design of Tx.Rx broadband antenna on LTCC at K/Ka band (LTCC 공정을 이용한 K/Ka 대역 송수신 겸용 이중 급전 안테나)

  • Cheon, Young-Min;Kim, Sung-Nam;Oh, Min-Seok;Choi, Jae-Ick;Pyo, Cheol-Sig;Lee, Jong-Moon;Cheon, Chang-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2055-2057
    • /
    • 2004
  • The Ku band that has been using for the satellite communication and broadcasting would be changed to K/Ka bands. The satellite system requires the antenna structure to fabricate low loss and small antenna that is able to be integrated with other Rf circuits for both Rx and Tx. So we should design it with dual feed antennas at K/Ka bands, high isolation between two different feeds and broadband circular polarization. This paper proposes the LTCC(Low Temperature Co-fired Ceramic) process for integration with other Rf circuits and the Axial mode of the helical antenna to satisfy those requirements.

  • PDF

Modeling of High-speed 3-Disional Embedded Inductors (고속 3차원 매립 인덕터에 대한 모델링)

  • 이서구;최종성;윤일구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.139-142
    • /
    • 2001
  • As microeletronics technology continues to progress, there is also a continuous demand on highly integration and miniaturization of systems. For example, it is desirable to package several integrated circuits together in multilayer structure, such as multichip modules, to achieve higher levels of compactness and higher performance. Passive components (i.e., capacitors, resistors, and inductors) are very important for many MCM applications. In addition, the low-temperature co-fired ceramic (LTCC) process has considerable potential for embedding passive components in a small area at a low cost. In this paper, we investigate a method of statistically modeling integrated passive devices from just a small number of test structures. A set of LTCC inductors is fabricated and their scattering parameters (5-parameters) are measured for a range of frequencies from 50MHz to 5GHz. An accurate model for each test structure is obtained by using a building block based modeling methodology and circuit parameter optimization using the HSPICE circuit simulator.

  • PDF

Study on the characteristics of stripline resonator in the variation of metal content and grain size (도체 페이스트의 메탈 함량 및 입자 크기에 따른 스트립라인 레조네이터 특성 연구)

  • 유찬세;조현민;이우성;강남기;박종철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.159-163
    • /
    • 2002
  • So far, many kinds of researches on the chip components and MCM-C RF module especially on the 3-dimensional ceramic module using embedded passives have been performed. LTCC system has many kinds of advantages, like low loss, low cost of process, stability of process etc..The electrical behaviors of components are affected by that of the material systems including dielectrics and conductors. In this study, many kinds of conductor pastes in the variation with metal content and grain size are fabricated and their effect on the characteristics of stripline resonator are examined upto 6 ㎓.

  • PDF

Circuit Modeling of 3-D Parallel-plate Capacitors Fabricated by LTCC Process

  • Shin, Dong-Wook;Oh, Chang-Hoon;Yun, Il-Gu;Lee, Kyu-Bok;Kim, Jong-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.19-23
    • /
    • 2004
  • A novel method of high speed, accurate circuit simulation in 3-dimensional (3-D) parallel-plate capacitors is investigated. The basic concept of the circuit simulation methods is partial element equivalent circuit model. The three test structures of 3-D parallel-plate capacitors are fabricated by using multi-layer low-temperature co-fired ceramic (LTCC) process and their S-parameters are measured between 50 MHz and 5 GHz. S-parameters are converted to Y-parameters, for comparing measured data with simulated data. The circuit model parameters of the each building block are optimized and extracted using HSPICE circuit simulator. This method is convenient and accurate so that circuit design applications can be easily manipulated.

A Design of Planner Linear Group Delay Equalizer (평면형 군위상 지연 선형화기의 설계)

  • Kwonn, Hyuk-Moon;Choi, Won-Kyu;Hwang, Hee-Yong;Choi, Kyung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.496-500
    • /
    • 2003
  • In This paper, a pole-zero optimized design method for multi-layed planar interdigital stripeline linear group delay bandpass filter with tap input port is presented. As a design example, a four-pole group delay filter with center frequency of 2.14GHz, bandwidth of 160MHz, and group delay variation of ${\pm}0.1nS$ for LTCC technology or multilayerd PCB technology is designed. In the design process, as well the whole structure is not necessary to be simulated, and within three times of optimizing process we have good result as well. This design method could be useful for controlling error correction of manufacturing process as well as design stage.

  • PDF

A Study of Post Electrode Formation by Microwave Sintering in LTCC Substrate (마이크로파 소결법을 이용한 LTCC 기판 Post 전극 형성에 관한 연구)

  • Kim, Yong-Suk;Lee, Taek-Jung;Yoo, Won-Hee;Chang, Byeung-Gyu;Park, Sung-Yeol;Oh, Yong-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.43-48
    • /
    • 2007
  • This study is focused on the effect of the surface properties for the post electrode, which is used in pad formation consisted of SMT such as IC, passive component, combined with fired LTCC substrate, We carried out the surface microstructure of sintered electrode and the basic reliability evaluations with sample fired by microwave sintering to solve the problems occurred in post electrode by electric sintering. We evaluated surface densification status of post electrode according to various conditions of microwave sintering. In additions, it is obtained strong effect on blister improvement of post electrode because of over-sintering and the insufficient out gas in bum out process. As a result of adhesion strength, we confirmed $44.3N/mm^2$ in microwave sintering and $34.5N/mm^2$ in electric sintering, respectively. This result will be used for the basic reliability test. Finally, microwave sintering seems to be economic in process time with 30 min compared to electric sintering with 10 hr. In terms of Mass production and efficiency, microwave sintering are excepted to be higher than electric sintering.

  • PDF

Stacked LTCC Band-Pass Filter for IEEE 802.11a (IEEE 802.11a용 적층형 LTCC 대역통과 여파기)

  • Lee Yun-Bok;Kim Ho-Yong;Lee Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.154-160
    • /
    • 2005
  • Microwave Otters are essential device in modem wireless systems. A compact dimension BPF(Band-pass Filter) for IEEE 802.11a WLAN service is realized using LTCC multi-layer process. To extrude 2-stage band-pass equivalent circuit, band-pass and J-inverter transform applied to Chebyshev low-pass prototype filter. Because parallel L-C resonator is complicate and hard to control the inductor characteristics in high frequency, the shorted $\lambda/4$ stripline is selected for the resonator structure. The passive element is located in the different layers connected by conventional via structure and isolated by inner GND. The dimension of fabricated stacked band-pass filter which is composed of six layers, is $2.51\times2.27\times1.02\;mm^3$. The measured filter characteristics show the insertion loss of -2.25 dB, half-power bandwidth of 220 MHz, attenuation at 5.7 GHz of -32.25 dB and group delay of 0.9 ns at 5.25 GHz.

Control of Explosion Behavior in Micro Hole Using UV Laser on LTCC Green Sheets Containing Carbon Particles (카본을 첨가한 LTCC 그린 시트에서 UV 레이저를 이용한 미세 홀 터짐 현상 제어)

  • Kim, Shi Yeon;Ahn, Ik-Joon;Yeo, Dong-Hun;Shin, Hyo-Soon;Yoon, Ho Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.786-790
    • /
    • 2016
  • Hole explosion behaviors were observed during drilling fine holes with laser beam on the LTCC green bar of $320{\mu}m$ thick after lamination of green sheets prepared by tape casting of thick film process. The incidence of these hole explosions was inversely proportional to hole sizes. The incidence of hole explosion was 20 % number of hole with the size of $60{\mu}m$ exploded for the UV radiation, while the explosion did not appear for hole sizes over $100{\mu}m$. To prevent hole explosion behavior during laser-drilling of fine holes, carbon black powder was added as an additive in the LTCC composition, which has superior thermal durability. As a consequence, hole explosion rate was suppressed to 0.8 % for the hole size of $50{\mu}m$ green sheet with the carbon black amount of 10 weight % and the laser power of 3 watt. Added carbon is thought to reduce the heat-affected region during laser drilling.