• 제목/요약/키워드: LQR design

검색결과 152건 처리시간 0.022초

유전 알고리즘에 의한 브러시리스 DC모터의 속도 제어용 혼합 $H_2/H_{\infty}$ PID제어기 설계 (Design of a Mixed $H_2/H_{\infty}$ PID Controller for Speed Control of Brushless DC Motor by Genetic Algorithm)

  • ;;김학경;김상봉
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.77-78
    • /
    • 2006
  • A mixed method between $H_2\;and\;H_{\infty}$ control are widely applied to systems which has parameter perturbation and uncertain model to obtain an optimal robust controller. Brushless Direct Current (BLDC) motors are widely used for high performance control applications. Conventional PID controller only provides satisfactory performance for set-point regulation. However, with the presence of nonlinearities, uncertainties and perturbations in the system, conventional PID is not sufficient to achieve an optimal robust controller. This paper presents an approach to ease designing a Mixed $H_2/H_{\infty}$ PID controller for controlling speed of Brushless DC motors and the genetic algorithm is used to solve the optimized problems. Numerical results are shown to prove that the performance in the proposed controller is better than that in the optimal PID controller using LQR approach.

  • PDF

연속시간 선형시스템에 대한 탐색화된 정책반복법 (Explorized Policy Iteration For Continuous-Time Linear Systems)

  • 이재영;전태윤;최윤호;박진배
    • 전기학회논문지
    • /
    • 제61권3호
    • /
    • pp.451-458
    • /
    • 2012
  • This paper addresses the problem that policy iteration (PI) for continuous-time (CT) systems requires explorations of the state space which is known as persistency of excitation in adaptive control community, and as a result, proposes a PI scheme explorized by an additional probing signal to solve the addressed problem. The proposed PI method efficiently finds in online fashion the related CT linear quadratic (LQ) optimal control without knowing the system matrix A, and guarantees the stability and convergence to the LQ optimal control, which is proven in this paper in the presence of the probing signal. A design method for the probing signal is also presented to balance the exploration of the state space and the control performance. Finally, several simulation results are provided to verify the effectiveness of the proposed explorized PI method.

CGT와 고유구조 지정법을 이용한 지남차의 불연성화 제어기 설계 (Decoupling Controller Design for the JINAMCHA by Using Command Generator Tracker and Eigenstructure Assignment)

  • 김주호;최재원
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.176-182
    • /
    • 1999
  • In this paper, we consider a decoupling control and a servo control for the JINAMCHA of which the cart and the pointer is coupled very strongly. The right eigenstructure assignment(i.e. simultaneous assignment of eigenvalues and right eigenvectors) is used for decoupling the motions of the cart and the pointer. The CGT(Command Generator Tracker) is used for a servo control of the JINAMCHA. The performance of the proposed control scheme, that is the combination of the right eigenstructure assignment and the CGT, is evaluated by simulations. The results show that the proposed controller has better performance than the LQR with limiting properties and the conventional LQ servo.

  • PDF

위상 최적화를 이용한 능동 감쇠층의 설계 (Design of an Active Damping Layer Using Topology Optimization)

  • 김태우;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.660-664
    • /
    • 2003
  • The optimal thickness distribution of an active damping layer is sought so that it satisfies a certain constraint on the dynamic performance of a system minimizing control efforts. To obtain a topologically optimized configuration, which includes size and shape optimization, thickness of the active damping layer is interpolated using linear functions. With the control energy as the objective function to be minimized, the state error energy is introduced as the dynamic performance criterion for the system and used lot a constraint. The optimal control gains are evaluated from LQR simultaneously as the optimization of the layer position proceeds. From numerical simulation, the topologically optimized distribution of the active damping layer shows the same dynamic performance and cost as the Idly covered counterpart, which is optimized only in terms of control gains, with less amount of the layer.

  • PDF

Development of Hardware-in-the-Loop Simulation System for Use in Design and Validation of VDC Logics

  • Park, Kihong;Heo, Seung-Jin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권3호
    • /
    • pp.28-35
    • /
    • 2003
  • The objective of the Vehicle Dynamics Control (VDC) system is to maintain vehicle stability under critical lateral motions, It has a good potential of becoming one of the chassis control necessities since the system can be realized with little additional cost on top of the ABS/TCS system, Developed in this research is a hardware-in-the-loop simulator for VDC with a valve control system that modulates the brake pressures at four wheels: Two VDC control logics, a simple control logic and an LQR control logic, have been developed and incorporated in the HILS system. Their performance under various driving conditions was tested in the HILS system and the results are presented.

SIL 기반 근접장 기록 시스템의 간극 제어를 위한 최적화된 PID 제어 알고리즘 성능평가 (Air-Gap Control Using Optimal PID Controller for SIL-Based Near-Field Recording System)

  • 신원호;김중곤;박노철;양현석;박영필;박경수
    • 정보저장시스템학회논문집
    • /
    • 제5권1호
    • /
    • pp.41-46
    • /
    • 2009
  • In SIL-based NFR servo systems, the residual error and the overshoot that are occurred in the process of the modes-witching servo which consists of approach, gap-control modes, and safety mode are reduced by using PID controller. However, the design method of conventional PID controller is not sufficient for the stable air gap control system. Therefore, the optimal PID controller using LQR manner is more useful to find the designed parameters of PID controller. In this paper, we show that the performance of the optimal PID controller is better than that of the lead-lag controller.

  • PDF

벡터제어 유도전동기의 모델추종 견실제어기 설계 (The Model-Following Robust Controller Design for the Vector-Controlled Induction Motor)

  • Chi Hwan Lee
    • 전자공학회논문지B
    • /
    • 제30B권11호
    • /
    • pp.93-101
    • /
    • 1993
  • The transfer function of vector-controlled induction motor is represented along with both unstructured and structured uncertainty such as the error of rotor time constant and current ripple. The low-pass-filter behavior of a magnetizing inductance gets rid of unstructured uncertainty in the transfer function. The robust controller to compensate variation of the transfer function is designed using simple P-I linear controllers. The coefficients of speed PI controller are determined from an overshoot and a rising time of system and the coefficients of model-following PI controller are obtained using the solution of Riccati equation of LQR control in the state space equation of the error system. Experimental results with the DSP-based model-following robust controller are shown a good robustness against the structured uncertainty of the motor.

  • PDF

NEW MODELING AND CONTROL OF AN ASYMMETRIC HYDRAULIC ACTIVE SUSPENSION SYSTEM

  • Kim, Wanil;Sangchul Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.490-495
    • /
    • 1998
  • In this paper an asymmetric hydraulic actuator which consists of single acting cylinder and servo valve is modeled for a quarter car active suspension system. This model regards the force as an internal state rather than a control input. The control input of the model is the sum of oil flows that pass through the valve's orifices. The resulting dynamic equation in the state space ap-pears a feedback connection of a nominal linear time in-variant term with a nonlinear bounded uncertain block. Since this model makes it possible to eliminate the force control phase, analysis and controller design are made straightforward and simple. Well known LQR method is then applied. Simulation and test rig experiment show the effectiveness of this approach in modeling and control.

  • PDF

최적제어이론을 이용한 DC-DC 컨버터의 제어기 설계 (Controller Design of a DC-DC Converter using an Optimal Control Theory)

  • 이상현;배은경;신철준;전기영;전지용;오봉환;이훈구;한경희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.421-423
    • /
    • 2007
  • In this paper, The authors apply a state feedback control using an optimal control theory to improve the stability of the control and the dynamic response of the DC-DC converter system with a number of different loads. To execute a this state feedback control, The authors present the pole placement technique using Linear Quadratic Regulator(LQR) to optimally control the system. An integrator can also be included in the open-loop path in order to minimize the steady-state error of the output voltage. To confirm the superiority of the controller, The simulation results are presented.

  • PDF

차분진화 알고리즘을 이용한 회전형 역 진자 시스템의 최적 퍼지 제어기 설계 (Design of Optimized Fuzzy Controller for Rotary Inverted Pendulum System Using Differential Evolution)

  • 김현기;이동진;오성권
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.407-415
    • /
    • 2011
  • In this study, we propose the design of optimized fuzzy controller for the rotary inverted pendulum system by using differential evolution algorithm. The structure of the differential evolution algorithm has a simple structure and its convergence to optimal values is superb in comparison to other optimization algorithms. Also the differential evolution algorithm is easier to use because it have simpler mathematical operators and have much less computational time when compared with other optimization algorithms. The rotary inverted pendulum system is nonlinear and has a unstable motion. The objective is to control the position of the rotating arm and to make the pendulum to maintain the unstable equilibrium point at vertical position. The output performance of the proposed fuzzy controller is considered from the viewpoint of performance criteria such as overshoot, steady-state error, and settling time through simulation and practical experiment. From the result of both simulation and practical experiment, we evaluate and analyze the performance of the proposed optimal fuzzy controller from the comparison between PGAs and differential evolution algorithms. Also we show the superiority of the output performance as well as the characteristic of differential evolution algorithm.