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Abstract

In this paper an asymmetric hydraulic actuator which
consists of single acting cylinder and servo valve is mod-
eled for a quarter car active suspension system. This
model regards the force as an internal state rather than
a control input. The control input of the model is the
sum of oil flows that pass through the valve’s orifices.
The resulting dynamic equation in the state space ap-
pears a feedback connection of a nominal linear time in-
variant term with a nonlinear bounded uncertain block.
Since this model makes it possible to eliminate the force
control phase, analysis and controller design are made
straightforward and simple. Well known LQR method is
then applied. Simulation and test rig experiment show
the effectiveness of this approach in modeling and con-
trol.

1. INTRODUCTION

During last three decades in the field of automo-
tive active suspension design, extensive researches have
been carried out to improve suspension quality which is
mainly represented by ride comfort and road holding.
Sky-hook control has a simple structure but is shown
to be effective especially in ride comfort[l] and would
be applied to a real car suspension[2]. Many other con-
trol methods like LQG, adaptive control and H, were
tried to to meet the such needs as the balance between
the ride comfort and road holding, robustness against
the uncertainty and so on[3-5]. Those methods assume
that the actuator dynamics is so fast that any kind of
force command can be generated correctly. A propor-
tional type force control, however, is shown to require
an ernormous feedback gain[6]. Alleyne and Hedrick ap-
plied an adaptive sliding mode control to the force con-
trol[7]. The conventional two step scheme, separate de-
sign of the ideal force command neglecting the actuator
dynamics and the force controller including the actua-
tor dynamics, seems complicated and the performance
would be dependent on the specific force control.

In this paper a new quarter car model including the
dynamics of an asymmetric hydraulic actuator is de-
veloped, which consists of a servo valve and a single
acting cylinder suitable for limited package space. This
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model regards the actuator force as an internal state
and the oil flow rate supplied by the valve as an con-
trol input. The dynamic equation is consists of a nomi-
nal linear time-invariant part and bounded parametric
uncertainties. The new control scheme eliminates the
unnecessary force control. As a result the analysis and
controller design can be performed in a systematic way.
After the modeling of a quarter car with an asym-
metric hydraulic actuator is given in Section 2, a single
step control scheme is given and an optimal state feed-
back is applied as an example in Section 3. Simulation
and test rig experiment results given and analyzed in
Section 4. Concluding remarks follows in Section 5.

2. MODELING OF A QUARTER CAR
2.1 Asymmetric hydraulic actuator

The actuator considered in this paper is a combined
asymmetric cylinder and a 4-way servo valve as shown
in Fig. 1. Both the oil flow rates into and out of the
cylinder are controlled by a single servo valve’s spool
motion, which is controlled by a solenoid. Following as-
sumptions are employed:

o the servo valve dynamics is fast enough to be ne-
glected.

¢ oil leakage and friction are negligible in the cylin-
der.

¢ the direction of oil flow is solely determined by the
sign of the spool position, i.e. the supply pressure,
P, is sufficiently high so that reverse flow does not
occur.

The pressure drop across the orifice Ap;(i = 1,2) is

defined as
[ Py—p ifv>0
Apl“{pl-Pe ifv<0 @
_[p—PF ifv2>0
Ap2_{P,,—p2 fv<0 (2)

Assuming the symmetry in the orifice geometries of the
valve, the flow rate ¢;(i = 1,2) via the orifices is

qg;i = Keqv\/ Ap,- (3)

where v is an input voltage to the servo valve, K.
is an equivalent gain of the valve. The sign of ¢ is
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Fig. 1. Structure of the quarter car active suspension
system

conventionally chosen positive when oil flows into the
cylinder and negative when it does out of the cylinder.
As for g9, the convention is reversed.

From the continuity equation of fluid[8]

g1 = A12gy + (VI/B)pI

(Va/B)ps (4)

@ = AgZgy —

where A;(i = 1,2) is the piston area of each chamber

and B is the bulk modulus of oil. The chamber V%Iumes
Vi(é = 1,2) is a function of cylinder stroke, zsy = 25 —
Zu(—L/2 <20 < L/2)

Vi (2eu) = VIO + A1Zgy
VZ(zau) = Va0 — A22sy (5)
where Vo = A;(L/2 + ;) is the neutral volume when

2su = 0, L is the length of the piston rod and I; corre-
sponds to a volume in the piping. With the piston area

ratio, v 2 A1 /Az2(y > 1), the load pressure is defined
by

A
PL =P — P2 (6)
Then the force exerted by the cylinder is
Jo = A1p1 — Aspy = Aspr, (7

Differentiating the both sides of (7) and rearranging
(4), the cylinder equation is obtained.

A2 A2
fa "—B(—'*‘ )Zsu+B(V <I1+—“42) (8)
The sum of the oil flow rate ¢, by the servo valve is
defined by

A
9G=q +q2 9)
= Keq'v(v Ap + V Ap2)
Defining r; for simplicity by
SR, SRV, - SN
VAp: +Bp;’ VAp; +/Ap:
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and rearranging (8)

fa = a(25u)2su + B(2su,T1,T2)0 (11)
where
2 2
,B(zsu)rla"'2) B(V( su) %j(tu)rg) (13)

Defining the nominal values, & and f for z,, = 0, Ap; =
Ape = (B — Pe)}/2,(r1 =12 =1/2),

A A? A%
42 —B 14
= -Bly g+ Vz(O) (9
~AB A
= (e 15
(11) is rewritten as
f:a = &2su + E[qs + we (Zau; zau; T1,T2, Qs)] (16)
where the model uncertainty is defined by
w2 (zsu, Z5u,T1,T2, ‘Ia) =
o (zsu)isu + 462 (z8u7 1, 7"2)(],9 (17)
where 61(-) = 8 (a(-) — &) and &,(-) = §! B() ~

B). wa(-) represents the uncertain parameters and the
nonlinear dynamics of the hydraulic system. Typical
behaviors of §; and §; are shown in Fig. 2.1 as a function
of the piston stroke z4,,. It is reasonable to assume that
Ap;’s vary p to P causing

ZSTZSF1 1=1a2 (18)

and 2,y is bounded by |24 (t)| < ¢, 0 < ¢ < L/2 for
safe operation. And the bulk moduls B is allowed to
vary within £20% of its nominal value. The effects of
the uncertainty would be negligible if the actuator is
operated around the mid-stroke.

We remark that the derived equations above are ap-
plicable to both symmetric and asymmetric types, but
for symmetric one more simplification is possible owing
to the equal piston areas. And the following symmetric
equations hold during its whole operation.

Po=pi+p, pr=p-— (19)

2.2 State space description of a quarter car

The equations of motion for the quarter car in Fig.
3 are as follow.

Moz, =
M.z, =

fa (20)
=By(2y — 2r) — Ki(2u — 2:) — fa (21)

The tire is modeled as a parallel spring and damper.
Note that passive elements such as spring and shock
absorber are not included in this model, because their
effects are overwhelmed by an active actuator if the
supply pressure is chosen sufficiently high.
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Fig. 3. Schematic diagram of a quarter car

Now the nominal state space equation is derived com-
bining (21), (21) and the nominal part of (16).

x = Ax + Byw; + Bau (22)
where
X=[2y— 2y 25 2y — 2r 24 fa]T7
w) = 2y, U = (s,
01 0 -1 0
00 0 0 1/M,
A=(00 0 1 0 )
00 —K;/M, ~Bi/M, —1/M,
0& 0 —& 0

0 0

0 0

Bl = ""1 N Bg = O
By/M, 0

0 B

Note in (22) that the active force belong to the state
vector x, control input is the sum of oil flow rates, g,
defined in (9). One can easily check that (A,Bg) pair
is controllable.

The distribution of the eigenvalues of A based on the
values in Table. 2, is compared with those of the passive
system as follows.

Table 1. Eigenvalue Distribution

type eigenvalues
passive -2.1518.46i, -24.48-£57.84i
active 0, -1.35:£23.22i, -7.60£1.05x 10° i

The fact that the eigenvalue distribution is totally
altered means that an active suspension system is not
merely a supplement of an actuator parallel to a passive
spring and damper.

3. CONTROLLER DESIGN
3.1 Single step control scheme

Conventional way of control of active suspension sys-
tem generally consists of two steps(Fig. 4).

(1) (outer loop) Assuming the actuator is ideal, find the
best force that will improve the suspension quality
most.

(2) (inner loop) Taking the actuator dynamics into con-
sideration, design a force controller that tracks the
force command.

Though this procedure seems logical, the design pro-

cedure is complicated and there is no known way to

optimize both the outer and inner loop control. That
is, the overall performance depends highly on the capa-
bility of the chosen force controller.

The new single step controller in Fig. 5 no longer as-
sumes the ideal actuator rather contains the actuator
dynamics in the quarter car model. The controller is
designed to improve the suspension performance only
and does not care for the specific shape of the actua-
tor force. The single step scheme which eliminates the
unnecessary force control step is more understandable,
and the analysis and control synthesis are made easier.

3.2 Optimal control design example

In this section to show the effectiveness of the mod-
eling and control, the optimal state feedback control
is employed as an example. All the state variables are
assumed to be measurable and cost output is defined
by

Z3 3[28 2y — Zy By — 2 2y fa u]T (23)
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A linear quadratic cost functional is introduced to eval-
uate the quality of a suspension system.

[clxr [sts om] [Clx} i

u 04 x5 r U

. =2 2
dn 7 (@ + ok,

°
+q3z3r + q4z't2, +4qsf, f + ru?)dt (24)

where Q = diag(q1,¢2,43,44,85), ¢ > 0, (VQC1,A) is
detectable and a scalar r > 0.

Then the control input which minimizes (24) is given
as a state feedback

u=Kx (25)

solving the corresponding algebraic riccati equation.

The true control input v, the voltage command to
the servo valve, is calculated from (9), (25) with the
measurement of the pressures p; and p;.

v=g; X [Keq(v/Bp1 + /Ap2)] !
=Kx X [Keq(vVBpP1 + V/Ap2)] !

The above conversion is always possible during the nor-
mal operation of actuator. The possible failure, when

(26)

the piston hits either end of the cylinder, seldom oc-
curs because an extra safety stroke is added normally
in the hardware design phase. ’

3.3 Robust control against the uncertainty

The block diagram including the neglected uncer-
tainty we in (16) is shown in Fig. 4. The uncertainty
output is defined by

Z3 = [2au qa]T (27)

= ng

If the bounded parametric uncertainty block is defined
by

A= [51 62]1 x2 (28)
Then the uncertainty ws is written by
we == AzZy (29)

With this model, we can apply well-known robust sta-
bility analysis, robust H? control design, and etc.

4. SIMULATION AND EXPERIMENT
RESULTS

In this section the optimal controller is simulated and
experimented. The model parameters listed below are
based on the Quarter Car Test Rig at Postech.

Table 2. Test Rig parameter values

Symbol Value Unit
M, 280 kg
M, 50 kg
K, 1.79 x 10° N/m
K, 2.35 x 10* N/m
B, 895 N/m/s
B, 1500 N/m/[s
K, 356 m35/kg%5/V
p, 85 x 10%a Pa
B 1.4 x 10° Pa
Ay 1.96 x 103 m?
Ay 1.35 x 103 m?

~ 1.4569

L 160 mm
I, 20 mm

& 4.636 x 107 k_q/s;2

8 1.4 x 100 kg/s%/m?

4.1 Simulation Results

Q and r in (24) are selected as

Q =diga[104.1, 3906.2, 62500, 1.0 x 107'%,400] ,

r=2.25x 108 (30)
leading to the state feedback gain
K = —[4166 752 8864 1508 2.43] x 10~% (31)
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Fig. 7. Bode plot of f:-

In selecting Q and r, focus is both on the ride quality(q;)
and the road holding(gs). The resulting closed loop the
bode plot of Z,/%, is given Fig. 7. Although it is not
easy to compare an active system without any passive
elements with a passive system, the performance seems
satisfactory.

To see the time response, a 2 Hz sinusoidal road dis-
turbance with its amplitude 10mm is applied. In Fig. 8
(a) the amplitude of 2, is reduced to about 2mm, and
2z, tracks z, well all the time. Fig. 8 (b) shows the our
control input ¢, and the corresponding v calculated by
(26). As you see the plot of g, is symmetric around 0,
but that of v is not symmetric. Fig. 8 (c) shows the
pressure p;’s and the force f,. Note that the shape of
the force command of two step scheme has surprisingly
nothing common with that of actual force f,. To see the
effects of uncertainty §(-) the road amplitude is raised
up to 40mm Then to enhance both the ride quality
and the road holding, actuator stroke z,, is inevitably
increased. However the resulting responses show little
deviation from those of the nominal system. In Fig. 9
the plot of f, is given and |z;4|c0 is 42.2mm.

4.2 Experiment Results

Shaking experiments are performed on the Quarter
Car Test Rig at Postech. The time responses of 1 Hz
15mm high road disturbance are shown in Fig. 10 and
match well with the simulation results. The high fre-
quency noise in Fig. 10 (b) indicates the existence of
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unmodeled dynamics which seems originated from the
tire. The drift of pressure in (c) implies the leakage in
the cylinder. To prevent the high frequency noise from
destabilizing the system we filtered the calculated servo
valve input in (d).

5. CONCLUDING REMARKS

In this paper we propose a new model and control
for an automotive active suspension system. By con-
sidering the force as a state and the flow rate as an
input, unnecessary force control step is eliminated and
the analysis and synthesis are made quite easy. The
simulation and experiment results support this point.
Robust control methods are to be designed and tested
by the test rig experiment to overcome the effects of the
actuator uncertainty and the unmodeled high frequency
dynamics.
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