• Title/Summary/Keyword: LQR Controller

Search Result 185, Processing Time 0.025 seconds

Hybrid Fuzzy Learning Controller for an Unstable Nonlinear System

  • Chung, Byeong-Mook;Lee, Jae-Won;Joo, Hae-Ho;Lim, Yoon-Kyu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.79-83
    • /
    • 2000
  • Although it is well known that fuzzy learning controller is powerful for nonlinear systems, it is very difficult to apply a learning method if they are unstable. An unstable system diverges for impulse input. This divergence makes it difficult to learn the rules unless we can find the initial rules to make the system table prior to learning. Therefore, we introduced LQR(Linear Quadratic Regulator) technique to stabilize the system. It is a state feedback control to move unstable poles of a linear system to stable ones. But, if the system is nonlinear or complicated to get a liner model, we cannot expect good results with only LQR. In this paper, we propose that the LQR law is derived from a roughly approximated linear model, and next the fuzzy controller is tuned by the adaptive on-line learning with the real nonlinear plant. This hybrid controller of LQR and fuzzy learning was superior to the LQR of a linearized model in unstable nonlinear systems.

  • PDF

LQR Controller Design with Pole-Placement (극배치 특성을 갖는 LQR 제어기 설계)

  • Park, Mun-Soo;Park, Duck-Gee;Hong, Suk-Kyo;Lee, Sang-Hyuk;Park, Min-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.574-580
    • /
    • 2007
  • This paper deals with LQR controller design method tor system having complex poles. The proposed method is capable of systematically calculating weighting matrices based on the pole's moving-range and the relational equation between closed-loop pole(s) and weighting matrices. The method moves complex poles to complex poles or two distinct real poles. This will provide much-needed functionality to apply LQR controller. The example shows the feasibility of the proposed method.

Design and Implementation of LG-Servo Controller for Rotational Inverted Pendulum System Using Optimization Method (최적화 기법에 의한 회전형 역진자 시스템의 LQ-Servo 제어기 설계 및 구현)

  • Lee, Kang-Min;Yang, Ji-Hoon;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.79-81
    • /
    • 2004
  • LQ-Servo controller inherits the stability-robustness from rational LQR structure and also, satisfies performance-robustness that is lacking in LQR structure by importing partial output feedback. In this paper, LQ-Servo controller is suggested for strengthening the performance-robustness. For this, Several executings are effectively performed by implementing to the rotational inverted pendulum system.

  • PDF

Optimal Sliding Surface using LQR Method For Design of Sliding Mode Controller (슬라이딩 모드 제어기 설계를 위한 LQR방법을 이용한 최적 슬라이딩 표면 결정)

  • 이상현;민경원;이영철;황재승
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.419-426
    • /
    • 2003
  • An efficient procedure using LQR method for determining optimal sliding surfaces appropriate for different controller types is provided. The parametric evaluation of the dynamic characteristics of sliding surfaces is peformed in terms of SMC controller performance of single-degree-of-freedom(SDOF) systems. The control force limit is considered in this procedure. Numerical simulations for multi-degree-of-freedom(MDOF) systems verify the effectiveness of proposed method.

  • PDF

Control of the Attitude of a Wheeled Inverted Pendulum (차륜형 도립진자의 자세 제어)

  • Lee, Weon-Seob;Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.303-308
    • /
    • 1998
  • In this paper a neural network controller called "Feedback-State Learning" for control of the attitude of a wheeled inverted pendulum is presented. For the controller the design of a stable feedback controller is necessary, so the LQR is used for the feedback controller because the LQR has good performance on controlling nonlinear systems. And the neural networks are used for a feed forward controller. The designed controller is applied to the stabilization of a wheeled inverted pendulum. Because of its nonlinear characteristics such as friction and parameter variations in the linearization, the wheeled inverted pendulum is used for demonstration of the effectiveness of the proposed controller.

  • PDF

A Learning Method of LQR Controller using Increasing or Decreasing Information in Input-Output Relationship (입출력의 증감 정보를 이용한 LQR 제어기 학습법)

  • Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.84-91
    • /
    • 2006
  • The synthesis of optimal controllers for multivariable systems usually requires an accurate linear model of the plant dynamics. Real systems, however, contain nonlinearities and high-order dynamics that may be difficult to model using conventional techniques. This paper presents a novel loaming method for the synthesis of LQR controllers that doesn't require explicit modeling of the plant dynamics. This method utilizes the sign of Jacobian and gradient descent techniques to iteratively reduce the LQR objective function. It becomes easier and more convenient because it is relatively very easy to get the sign of Jacobian instead of its Jacobian. Simulations involving an overhead crane and a hydrofoil catamaran show that the proposed LQR-LC algorithm improves controller performance, even when the Jacobian information is estimated from input-output data.

Design of Linear Pitch Controller in Wind Turbine under the condition of Varying Operating Points (동작점 변화 조건에서의 풍력터빈 선형 피치제어기 설계)

  • Cheon, Jongmin;Kim, Choonkyoung;Lee, Joohoon;Hong, Jitae;Kwon, Soonman
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.40.1-40.1
    • /
    • 2011
  • This paper presents a pitch controller which can hold output power constant at the rated value. Although wind turbine contains complicated nonlinearities, its behaviour within a certain operating range of a point can be approximated by that of a linear model. By doing so, we can apply rather simple and systematic linear control techniques such as PID and LQR(Linear Quadratic Regulator) to design a linear pitch controller. Because these linear controllers are valid only in a sufficiently small range around an operating point, linearized wind turbine model under the condition of varying wind speed needs a linear pitch controller can achieve the aims of tracking the rated rotor rotational speed. We propose an improved linear pitch controller taking each merit of LQR and PI controller under the condition of varying operating points in this paper.

  • PDF

Design of Balancing Robot Controller using Optimal Control Method (최적제어 기법을 이용한 밸런싱 로봇 제어기의 설계)

  • Yeo, Hee-Joo;Park, Hun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.190-196
    • /
    • 2014
  • In this paper, we get state equations based on wheel's rotation, tilt and steering are independent each other in balancing robot. Accordingly, we propose two LQR controllers which are appropriate for rotation and steering control of a balancing robot. And its superiority and appropriateness are demonstrated by a comparison to a PID method. Simulation results verify the possibility of upright balancing, rectilinear motion and position control. Moreover, experimental results show that it guarantees the performance to apply the two LQR controllers to balance the robot.

fictive Noise Control of Enclosed Sound Field Using LQR Controller (LQR 제어기를 이용한 밀폐음장의 능동소음제어)

  • 유우열;김우영;황원걸;이유엽
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.12-20
    • /
    • 2002
  • To control the noise of an enclosed sound field, we built a state space model using the acoustic modal parameter description. Using the state space model, we can investigate the controllability and observability, and find an appropriate position of control speaker and microphone to control sound field of the enclosed space. We implemented LQR(linear quadratic regulator) controller and reduced order observer to reduce the first acoustic mode. Experiments showed satisfactory results of 4∼10 dB reduction of magnitude of the first acoustic mode, and support the feasibility of the proposed scheme to lightly damped acoustic field.

I-PD Controller Design using LQR Method in a Two-Mass Motor Drive System (2관성 전동기 속도 시스템에서 LQR방법에 의한 I-PD 제어기 설계)

  • Park, Yong-Sung;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.46-49
    • /
    • 2002
  • This paper presents I-PD controller design using LQR method in a two-inerita motor system to satisfy the design specification in time domain. And to provide a systematic LQ analysis for two-inerita motor system. The tuning parameters of LQ(I-PD) controller are determinated by the relationships between the design parameters of the overshoot and the settling time which are design specifications in time domain, and the weighting factors Q and R in LQR we can achieve the performance-robustness in time domain as well as the stability-robustness.

  • PDF